从局部到全局的规则模型:粒聚合研究
CSTR:
作者:
作者单位:

加拿大阿尔伯塔大学埃德蒙顿分校 电气与计算机工程系,埃德蒙顿 T6R 2V4

作者简介:

Pedrycz Witold(1953—),加拿大工程院院士,教授,博士。主要研究方向为智能计算、模糊建模和粒计算、人工智能、数据挖掘。 E-mail:wpedrycz@ualberta.ca

中图分类号:

TP181


From Local to Global Rule-Based Models: A Study in Granular Aggregation
Author:
Affiliation:

Department of Electrical and Computer Engineering,University of Alberta, Edmonton AB ,Edmonton AB T6R 2V4, Canada

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    顾名思义,多视图模型是从不同的视角捕捉现实界系统的模型,通常包含本地可用的特性(如属性、输入变量)。综合考虑时,必须对一群多视图模型进行聚合。当建立一个包含所有属性的整体模型不可行且不能通过合理的计算实现时,多视图模型也会出现在包含大量变量的数据中。基于模糊规则体系结构,考虑和讨论2种情形。在构建多视图模型的聚合时,一个重要的任务是为整个全局模型设置一个可靠的质量度量,使用该度量可以有效地评估由规则模型生成的单个结果的相关性。提倡用输出的信息粒来量化结果的质量,而不是一个单一的数字结果。在上述2个情形中,使用合理粒度增强原理(粒计算的基础之一)聚合了一系列多视图模型产生的结果。认为多视图模型传递的结果多样性可以通过生成结果的粒度形式进行捕获和量化。最后,讨论了相关的优化准则和优化过程。

    Abstract:

    Multiview models, as the name stipulates, are models capturing real-world system perceived from different points of view (perspectives), typically engaging locally available features (attributes, input variables). When considered together, a collection of multiview models has to be aggregated. Multiview models also arise in the presence of data with a massive number of variables when building a monolithic model involving all attributes is neither feasible nor computationally sound. In this paper, two categories of scenarios have been formulated and discussed by focusing on fuzzy rule-based architectures. An important task when building an aggregate of multiview models is to equip the overall global model with a sound measure of quality, by using which, one can efficiently assess the relevance of the individual results produced by the rule-based models. It is, therefore, advocated that the quality of the results can be quantified by an output information granule rather than a single numeric outcome. In the two scenarios outlined above, the results produced by a family of multiview models are aggregated with the use of the augmented principle of justifiable granularity-one of the fundamentals of Granular Computing. It is also advocated that the diversity of the results delivered by multiview models can be captured and quantified in the granular form of the produced result. The related optimization criterion along with the associated optimization process are discussed.

    图1 Input-output piecewise-linear characteristics of the fuzzy rule-based modelFig.1
    图2 Input-output data and their relational natureFig.2
    图3 Concrete data: relFig.3
    图4 Abalone data: relFig.4
    图5 Superconductivity data: relFig.5
    图6 Relationships between abstraction (coverage) and specificity of information granules of temperatureFig.6
    图7 Example plots of coverage and specificity (linear model) regarded as a function of bFig.7
    图8 Two step-design of interval information granuleFig.8
    图9 Examples of error profiles f(e)Fig.9
    图10 Granular aggregation of multiview modelsFig.10
    图11 Piecewise relationships with interval-valued cutoff pointsFig.11
    图12 Augmented architecture of the model: note elevation of type of information granularity when progressing towards consecutive phases of aggregationFig.12
    参考文献
    相似文献
    引证文献
引用本文

PEDRYCZ Witold.从局部到全局的规则模型:粒聚合研究[J].同济大学学报(自然科学版),2021,49(1):142~152

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-24
  • 在线发布日期: 2021-02-26
文章二维码