橡胶层与空腔的结构-声耦合解析模型和隔声优化
CSTR:
作者:
作者单位:

同济大学 汽车学院,上海 201804

作者简介:

邓国明(1990—),男,博士生,主要研究方向为汽车振动与噪声控制。E-mail:dengguoming@tongji.edu.cn

通讯作者:

吴 宪(1971—),男,副研究员,博士生导师,工学博士,主要研究方向为汽车振动与噪声控制。 E-mail:wuxian@tongji.edu.cn

中图分类号:

U463.83

基金项目:

国家自然科学基金(51805372);上海市自然科学基金(18ZR1440900);上海市科技创新行动计划(18DZ1201703)


Structural-acoustic Coupling Analytical Model and Sound Insulation Optimization of Rubber Layers and Cavity
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对橡胶薄层与空腔的声学耦合,提出一种结构?声耦合解析模型,并基于该模型对密封条的材料与几何参数进行优化。通过加入余弦辅助函数,得到空腔的声学模态振型函数。利用瑞利?里兹法,建立简支双薄层结构振动与空腔声学耦合的解析模型。利用该模型分别计算单点激励的均方响应和扩散声场激励的隔声。通过与阻抗?迁移率方法和混合有限元?统计能量分析(FE?SEA)方法的计算结果对比,验证了该解析模型的准确性。结果表明:与FE?SEA方法相比,该解析模型具有较高的计算效率;利用该解析模型和粒子群算法优化材料与几何参数,使得隔声提高10 dB以上;优化的密封条趋向于扁而宽的截面。

    Abstract:

    In view of the acoustic coupling between rubber thin layers and a cavity, an analytical model for structural-acoustic coupling was proposed, and the material and geometric parameters of sealing strip were optimized based on the model. The acoustic modal shape function of the cavity was obtained by adding an auxiliary cosine function. By employing the Rayleigh-Ritz method, the analytical model was established for the structural-acoustic coupling between the vibrations of simply-supported layers and the coupled cavity. The analytical model was used to calculate the mean square responses of a double-wall model under single-point force and the sound transmission loss under a diffuse acoustic field, respectively. The accuracy of the model was verified by comparing with the results of the impedance-mobility method and the numerical method of hybrid finite element-statistical energy analysis (FE-SEA). The results show that: the proposed method has higher computational efficiency than the FE-SEA method; the analytical model and particle swarm algorithm can optimize the material and geometric parameters so that the sound insulation can be improved by more than 10 dB; the optimized sealing strip tends to have a flat and wide cross-section.

    表 1 材料参数[16,21]Table 1
    图1 薄板‒空腔‒薄板的结构‒声耦合解析模型Fig.1 Structural-acoustic coupling analytical model for thin plate-cavity-thin plate
    图2 单点力激励下的均方响应Fig.2 Mean square response under single-point force excitation
    图3 扩散声场激励下的隔声Fig.3 Sound transmission loss (TL) under excitation of diffuse sound field
    图4 某轿车A柱上的密封条截面几何及门洞密封条的简化Fig.4 Cross-section geometry of sealing strip on A-pillar of a certain car and simplification of door-hole sealing strip
    图5 针对结构‒声耦合和隔声分析的门洞密封条截面参数化设计Fig.5 Parametric design of door-hole sealing strip section for structural-acoustic coupling and TL analysis
    图6 汽车门密封条橡胶海绵体的应力‒应变试验结果Fig.6 Stress-strain results of sponge rubber of automotive door sealing strip
    图7 优化前后密封条的隔声解析结果Fig.7 Analytical results of sound insulation of sealing strip before and after optimization
    图8 优化后的实际密封条截面、一阶模态及FE‒SEA模型Fig.8 Optimized actual sealing strip’s cross-section, the first-order mode, and the FE-SEA model
    图9 优化前后实际截面形状的密封条隔声对比Fig.9 Comparison of sound insulation of sealing strip with actual cross-sectional shape before and after optimization
    参考文献
    引证文献
引用本文

邓国明,郑松林,邵建旺,吴宪,陈则尧.橡胶层与空腔的结构-声耦合解析模型和隔声优化[J].同济大学学报(自然科学版),2021,49(2):280~288

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-18
  • 在线发布日期: 2021-03-18
文章二维码