钢轨滚动接触疲劳裂纹萌生和磨耗共存预测方法验证
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804;3.中国铁道科学研究院集团有限公司 金属及化学研究所,北京 100081

作者简介:

周 宇(1977—),男,副教授,博士生导师,工学博士,主要研究方向为钢轨伤损、轨道结构。 E-mail:yzhou2785@tongji.edu.cn

中图分类号:

U213.42

基金项目:

国家自然科学基金(51678445,51878661);中国国家铁路集团有限公司科技研究开发计划课题(K2019G010)


Verification of Prediction Method for Coexistence of Rolling Contact Fatigue Crack Initiation and Wear Growth in Rail
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Key Laboratory of Rail Transit Structure Endurance and System Safety, Tongji University, Shanghai 201804, China;3.Metals and Chemistry Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用小比例轮轮滚动接触疲劳试验再现钢轨裂纹萌生和磨耗过程,根据钢轨裂纹萌生和磨耗共存预测方法结合试验条件建立相应的预测模型,分别对试验和仿真预测的钢轨试样磨耗、裂纹萌生寿命和启裂角度等进行比对,从而验证钢轨裂纹萌生和磨耗共存预测方法。研究发现:当试样萌生裂纹时,有53.8%的试样经历了2个磨耗阶段,平均磨耗发展率约为5.83 μm·10-4-1;预测的试样在萌生裂纹前经历了2次磨耗阶段,平均磨耗发展率约为5.18 μm·10-4-1,较试验结果低约11.1 %;试验中试样裂纹萌生寿命在6×104 ~ 14×104次范围内,且裂纹长度在荷载循环次数在11×104 ~ 12×104次时达到极大值,预测的裂纹萌生寿命为11.1×104次,基本与试验结果中裂纹萌生时出现极大值的试样所对应的荷载作用次数接近。试验观测到试样表面裂纹开口与滚动方向的角度平均值约为45°;仿真预测的裂纹开口与滚动方向的角度平均值基本与观测到的裂纹开口与滚动方向的角度一致。

    Abstract:

    A small-scale wheel-wheel rolling contact fatigue (RCF) experiment was applied to reproduce the rail RCF crack initiation and wear growth process. Then, according to the experimental conditions, the prediction model was established based on the method for the coexistence of rail rolling contact fatigue(RCF) crack initiation and wear growth. The wear, crack initiation life and the angle of the RCF crack in the rail specimens of the experiment and simulation were compared to verify the method. The result shows that when the crack initiated in the specimen surface during the experiment, 53.8 % of the specimen experiences two wear phases. The average wear growth rate is about 5.83 μm·10-4 cycles-1. In the simulation, there are also two wear phases when the crack was initiated. The average wear growth rate is about 5.18 μm·10-4 cycles-1 which is about 11.1 % lower than the experimental results. In the experiment, the crack initiation life is about 6×104 to 14×104 cycles. Moreover, the crack length reaches its maximum value when the loading cycles is about 11×104 to 12×104 cycles. In the simulation, the predicted crack initiation life is about 11.1×104 cycles, which is close to that of the specimen with the maximum crack length in the experiment. It is observed that the average value of the angle between the crack mouth and the running direction along the specimen surface is about 45°which is close to that of simulation.

    表 1 不同磨耗阶段时的临界平面与单次荷载作用疲劳损伤量Table 1
    图1 裂纹萌生‒磨耗共存方法的试验和预测对比Fig.1 Comparison of experiment and prediction of coexistence of crack initiation and wear
    图2 试样取样位置Fig.2 Sampling position of specimen
    图3 轮轮接触状态(单位:mm)Fig.3 Wheel-wheel contact (unit:mm)
    图4 主试样接触表面形貌特征图Fig.4 Topography feature of rail specimen surface
    图5 试样有限元模型接触区局部网格细化Fig.5 Local mesh refinement in contact area of finite element model of rail specimen
    图6 主试样接触区磨耗廓形与阶段划分Fig.6 Wear profile and phase division of contact area of specimen
    图7 疲劳损伤累积量分析平面与裂纹萌生位置Fig.7 Plane of fatigue damage accumulation and position of crack initiation
    图8 试样磨耗深度与荷载循环次数关系Fig.8 Specimen surface wear depth versus loading cycles
    图9 不同磨耗阶段下试样旋转1周主试样接触面磨耗深度Fig.9 Wear depth of contact surface of specimen by one cycle in different wear phases
    图10 主试样接触面裂纹萌生时的长度Fig.10 Crack length at contact surface of specimen when crack initiation
    图11 试样表面疲劳损伤累积过程Fig.11 Fatigue damage accumulation at surface of specimen
    图12 不同磨耗阶段P点的Mises应力与等效塑性应变分布Fig.12 Mises stress and equivalent plastic strain distribution at point P in different wear phases
    图13 仿真预测的裂纹角度Fig.13 Initiation angle of crack predicted in simulation
    参考文献
    [1] 周宇,黄旭炜,王树国,等.考虑轨道几何不平顺的钢轨裂纹萌生与磨耗共存预测[J].同济大学学报(自然科学版),2019,47(11):1600.
    [2] 吴强.城市轨道交通钢轨滚动接触疲劳裂纹萌生预测[J].上海工程技术大学学报,2017,31(4):295.
    [3] ZHOU Y,WANG S F,WANG T Y. Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J]. Wear,2014,315(1/2):68.
    [4] 王文健. 轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D]. 成都:西南交通大学,2008.
    [5] 王文健,郭俊,刘启跃,等. 磨损对钢轨滚动接触疲劳损伤的影响. 机械工程材料[J],2010(1):17.
    [6] BOLTON P J,CLAYTON P. Rolling-sliding wear damage in rail and tyre steels[J]. Wear, 1984,93(2):145.
    [7] TYFOUR W R,BEYNON J H,KAPOOR A. The steady state wear behaviour of pearlitic rail steel under dry rolling-sliding contact conditions[J]. Wear,1995,180(1/2):79.
    [8] 张伟. 钢轨滚动接触疲劳实验研究[D].成都:西南交通大学,2005.
    [9] 张波,刘启跃. 轮轨磨损的实验研究[J].机械,2001,28(4):20.
    [10] 王文健,郭俊,刘启跃. 轮轨磨损与滚动疲劳裂纹损伤关系及预防研究[J]. 中国表面工程,2010,23(3):106.
    [11] ZHOU Yu, HAN Yanbin, MU Dongsheng, et al. Prediction of the coexistence of rail head check initiation and wear growth[J]. International Journal of Fatigue, 2018, 112: 289.
    [12] 中华人民共和国工业和信息化部. 金属材料滚动接触疲劳试验方法:YB/T 5345—2014[S]. 北京:冶金工业出版社,2014.
    [13] ZHAO Xin, WANG Zhe, WEN Zefeng, et al. The initiation of local rolling contact fatigue on railway wheels: An experimental study[J]. International Journal of Fatigue, 2020,132:105354.
    [14] KALKER J J. Three-dimensional elastic bodies in rolling contact[M]. Dordrecht:Springer,1990.
    [15] CLAUDE B,ANDRE P. 材料与结构的疲劳[M].吴圣川,李源,王清远译.北京:国防工业出版社, 2016.
    [16] 李飞. 随机因素作用下钢轨接触疲劳裂纹萌生寿命研究[D].石家庄:石家庄铁道大学,2019.
    [17] NEJAD R, FRAHANGDOOST K, SHARIATI M, Three-dimensional simulation of rolling contact fatigue crack growth in UIC60 rails[J]. Tribology Transactions, 2016(4): 1059.
    [18] ARCHARD F J. Wear theory and mechanisms[Z]. New York: ASME, 1980.
    [19] 邝迪峰. 钢轨裂纹萌生预测中的磨耗问题研究[D].上海:同济大学,2017.
    [20] JIANG Y, SEHITOGLU H. A model for rolling contact failure[J]. Wear, 1999, 224(1): 38.
    [21] 尚德广,王德俊. 多轴疲劳强度[M]. 北京:科学出版社,2007.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周宇,王钲,卢哲超,梁旭,李骏鹏.钢轨滚动接触疲劳裂纹萌生和磨耗共存预测方法验证[J].同济大学学报(自然科学版),2021,49(3):411~420

复制
分享
文章指标
  • 点击次数:429
  • 下载次数: 903
  • HTML阅读次数: 192
  • 引用次数: 0
历史
  • 收稿日期:2020-09-30
  • 在线发布日期: 2021-04-06
文章二维码