柔性作业车间调度的精确邻域结构混合进化算法
CSTR:
作者:
作者单位:

同济大学 机械与能源工程学院,上海 201804

作者简介:

王家海(1964—),男,副教授,博士生导师,工学博士,主要研究方向为数字化制造及相关技术。 E-mail:jhwang@tongji.edu.cn

中图分类号:

TP301.6

基金项目:

国家重点研发计划(2017YFE0101400)


Evolutionary Algorithm with Precise Neighborhood Structure for Flexible Workshop Scheduling
Author:
Affiliation:

School of Mechanical Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为解决现有基于关键路径的邻域搜索存在无效移动多、盲目性大以及仅优化单一目标的问题,设计了更加明确精准有效的邻域结构,包括同机器移动和跨机器移动两步操作;在此基础上,给出相应的关键工序精确移动条件,并将其从优化最大完工时间推广到多目标优化;为兼顾算法局部搜索和全局搜索,将其与进化算法进行混合,实现局部与全局的优势互补,并给出相应的混合算法框架;最后,通过两个国际通用的案例集进行测试,并将测试结果与成熟的算法进行对比,验证了所设计算法的有效性和高效性。

    Abstract:

    In order to solve the problems of the existing neighborhood search based on critical path, such as too many invalid moves, too much blindness and optimization one objective, a more precise and effective neighborhood structure is designed, including the two-step operation of the same machine movement and the cross-machine movement. Based on which, the corresponding operation movement conditions are given and extended from the optimization of the maximum completion time to multi-objective optimization. Besides, to realize the complementary advantages of local and global search, the algorithm is mixed with the evolutionary algorithm, and the corresponding hybrid algorithm framework is given. Moreover, two internationally used case sets are tested, and the test results are compared with those of other algorithms to verify the effectiveness and efficiency of the proposed algorithm.

    表 6 BRdata案例的IGD测度值Table 6
    表 2 Kacem案例集统计结果Table 2
    表 3 Kacem案例的IGD测度值Table 3
    表 5 C测度对比结果Table 5
    表 1 Kacem案例集求解结果Table 1
    表 4 对比单个解的质量Table 4
    图1 同机器移动关键工序Fig.1 Critical operation on the same machine
    图2 跨机器移动关键工序Fig.2 Critical operation across machines
    图3 染色体编码方式Fig.3 Chromosome coding
    图4 混合算法框架图Fig.4 Framework of hybrid algorithm
    图5 10×7问题实例解[11, 11, 61]的甘特图Fig.5 Gantt chart of the solution [11, 11, 61] of the 10×7 problem
    图6 帕累托前沿面Fig.6 Pareto front
    参考文献
    [1] WANG X, GAO L, ZHANG C, et al. A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(5/8): 757.
    [2] GAO J, SUN L, GEN M. A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems[J]. Computers & Operations Research, 2008, 35(9): 2892.
    [3] LI J Q, PAN Q K, GAO K Z. Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems[J]. International Journal of Advanced Manufacturing Technology, 2011, 55(9/12): 1159.
    [4] GONG G, DENG Q, CHIONG R, et al. An effective memetic algorithm for multi-objective job-shop scheduling[J]. Knowledge Based Systems, 2019, 182: 104840.
    [5] GAO K Z, SUGANTHAN P N, PAN Q K, et al. Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling[J]. Information Sciences, 2014, 289: 76.
    [6] LI J Q, PAN Q K, SUGANTHAN P N, et al. A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem[J]. International Journal of Advanced Manufacturing Technology, 2011, 52(5/8): 683.
    [7] VITAL-SOTO A, AZAB A, BAKI M F. Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility[J]. Journal of Manufacturing Systems, 2020, 54: 74.
    [8] ZHANG G, SHAO X, LI P, et al. An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2009, 56(4): 1309.
    [9] CHIANG T C, LIN H J. A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling[J]. International Journal of Production Economics, 2013, 141(1): 87.
    [10] WANG L, ZHOU G, XU Y, et al. An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling[J]. International Journal of Advanced Manufacturing Technology, 2012, 60(9/12): 1111.
    [11] 赵诗奎. 柔性作业车间调度的改进邻域结构混合算法[J]. 计算机集成制造系统, 2018, 24(12): 144.
    [12] 赵诗奎. 求解柔性作业车间调度问题的两级邻域搜索混合算法[J]. 机械工程学报, 2015(14): 181.
    [13] ZHANG C Y, LI P G, RAO Y Q, et al. A new hybrid GA/SA algorithm for the job shop scheduling problem[C]// European Conference on Evolutionary Computation in Combinatorial Optimization. Berlin: Springer, 2005:246-259.
    [14] KACEM I, HAMMADI S, BORNE P. Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic[J]. Mathematics & Computers in Simulation, 2002, 60(3/5): 245.
    [15] BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3): 157.
    [16] 孟冠军, 杨大春, 陶细佩. 基于混合人工蜂群算法的多目标柔性作业车间调度问题研究[J]. 计算机应用研究, 2019, 36(4): 972.
    [17] 吴贝贝, 张宏立, 王聪,等. 基于正态云模型的状态转移算法求解多目标柔性作业车间调度问题[J/OL]. [2020-06-05]. https://doi.org/10.13195/j.kzyjc.2019.1233.
    [18] XING L N, CHEN Y W, YANG K W. An efficient search method for multi-objective flexible job shop scheduling problems[J]. Journal of Intelligent Manufacturing, 2009, 20(3): 283.
    [19] BAGHERI A, ZANDIEH M, MAHDAVI I, et al. An artificial immune algorithm for the flexible job-shop scheduling problem[J]. Future Generation Computer Systems, 2010, 26(4): 533.
    [20] 裴小兵, 李依臻. 基于三方博弈的改进遗传算法求解多目标柔性作业车间调度[J]. 工业工程与管理, 2020, 25(4): 59.
    [21] DENG Q W, GONG G L, GONG X R, et al. A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling[J]. Computational Intelligence and Neuroscience, 2017, 2017:1.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王家海,李营力,刘铮玮,刘江山.柔性作业车间调度的精确邻域结构混合进化算法[J].同济大学学报(自然科学版),2021,49(3):440~448

复制
分享
文章指标
  • 点击次数:498
  • 下载次数: 1204
  • HTML阅读次数: 439
  • 引用次数: 0
历史
  • 收稿日期:2020-06-08
  • 在线发布日期: 2021-04-06
文章二维码