基于模拟实验的低等级公路车辆过弯风险预测模型
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,上海 201800

作者简介:

柳本民(1968?),女,副教授,博士生导师,工学博士,主要研究方向为道路安全与环境。 E-mail:liubenming@tongji.edu.cn

通讯作者:

廖岩枫(1996‒),女,硕士生,主要研究方向为道路安全与驾驶行为。E-mail:18217791871@163.com

中图分类号:

U491

基金项目:

国家重点研发计划重点专项(2017YFC0803902)


Risk Prediction Model of Vehicle Driving in Small Radius Curves Based on Simulation Experiment
Author:
Affiliation:

Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201800, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过驾驶模拟实验对低等级公路车辆驾驶数据进行采集,从车辆过弯时的横向风险与纵向风险出发,对弯道的行驶数据进行统计分析,得到8个主要参数,并通过主成分分析筛选出速度标准差、切向加速度标准差及方向盘转速3个核心统计量,再以此为基础进行k均值聚类,分离出弱风险、急刹车、急转弯、强风险4类驾驶风险。最后取车辆过弯的前1/4时间窗口内的3个核心统计参数作为测试集,整条弯道的行驶数据作为训练集,通过Fisher进行建模,该模型的识别精度可达76.5%。

    Abstract:

    The driving data of car driving in low-grade highway was collected from the simulation experiment. Focus on the horizontal risk versus vertical risk, 8 major statistics were calculated from the driving data, from which, 3 core statistics (standard deviation of velocity, tangential acceleration and steering wheel speed) were screened by principal component analysis(PCA). Based on the 3 core statistics, 4 kinds of risks (weak risk, sharp brake, sharp turn, strong risk) were separated by k-mean clustering. Then, a risk prediction model of vehicle driving in small curves was founded based on Fisher, whose test set was the 3 core statistics of the initial 1/4 period that vehicle driving in curves, and training set was that of the whole curve. The accuracy of the risk prediction model was 76.5%.

    参考文献
    相似文献
    引证文献
引用本文

柳本民,廖岩枫,涂辉招,管星宇.基于模拟实验的低等级公路车辆过弯风险预测模型[J].同济大学学报(自然科学版),2021,49(4):499~506

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11
  • 出版日期:
文章二维码