路线平面线形设计计算的两点线元法原理
CSTR:
作者:
作者单位:

1.大连理工大学 交通运输学院,辽宁 大连 116023;2.大连海洋大学 海洋与土木工程学院,辽宁 大连 116023;3.辽宁省交通高等专科学校 道路桥梁工程系,辽宁 沈阳 110122

作者简介:

李玉华(1971?),男,副教授,工学博士,主要研究方向为集成化道路工程CAD技术。 E-mail: liwo@dlut.edu.cn

中图分类号:

U412.33;U412.31

基金项目:

国家自然科学基金面上项目(51878121)


Principle of Two-point Segmentary Element Method for Horizontal Alignment Design and Calculation
Author:
Affiliation:

1.School of Transportation & Logistics, Dalian University of Technology, Dalian 116023, China;2.College of Ocean and Civil Engineering, Dalian Ocean University, Dalian 116023, China;3.Department of Road & Bridge Engineering, Liaoning Provincial College of Communications, Shenyang 110122, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    提出通过两点确定平面线形线元的设计计算方法。将平面线形线元分为切直线、圆曲线、正\反向完整型回旋线、正\反向非完整型回旋线共6种基本类型,均可由最多4个独立参数唯一确定。采用线元法顺次设计平面线形时,与起点相关的坐标、切向角、半径3个独立参数已知,故只需再拟定终点坐标即可唯一确定各基本型线元,均类似于两点确定一条直线。偏转角是线元其余参数计算的关键,圆曲线线元采用解析法,回旋线线元采用迭代法,亦可通过多项式拟合公式进行预估,误差不超过1.0%。两点线元法凸显坐标位置对线形的控制作用,适宜于立交、山岭区等复杂曲线线形设计及既有道路线形重构等。

    Abstract:

    A design and calculation method was proposed for determining horizontal linear elements through two points. The segmentary elements of the horizontal alignment can be divided into six classifications: tangential straight line, circular curve, and four types of clothoids. There are no more than 4 dependent parameters for each segmentary element. When designing horizontal alignment by the segmentary element method, the three parameters related to the origin point are known. Thus, once the coordinate of the destination point is available, the six basic types of segmentary elements and the remaining parameters can be uniquely determined simply by using the origin and destination points of the segmentary element, which is similar to the determination of a straight line through two points. The calculation of the deflection angle of the segmentary element is the key to solving the parameters. For the circular curves the analytical method is employed, whereas for the clothoids the iterative method is recommended. The deflection angle can be estimated by fitting formula of polynomial, with the error which is less than 1.0%. The two-point segmentary element method emphasizes the control effect of the coordinates’ location on the alignment, in which the alignment is easy to control through the destination location of the segmentary elements. The method is applicable to the complex horizontal alignment design for roads at the interchange ramp and hilly area as well as the reconstruction of the existing road alignments.

    参考文献
    [1] 朱照宏,符锌砂,李方,等.道路勘测设计软件开发与应用指南[M].北京:人民交通出版社,2003.
    [2] 宋文.“附合导线法”设计匝道平面线形[J].公路,1991(9):11
    [3] 吴国雄.公路平面线形曲线型设计方法综述[J].公路,1996(9):21.
    [4] 李振.曲直法在立交匝道平面线形设计中的应用[J].中南公路工程,2002,27(2):8.
    [5] 丁建明,李方.公路平面线形设计的五单元导线法[J].东南大学学报,1998,28(2):155.
    [6] 缪鹍,詹振炎.基于直线约束的道路线形设计通用方法[J].中国公路学报,2002,15(3):15.
    [7] 凌九忠.立交平面交互式图形设计中模式法的应用研究[J].中国公路学报,1994,7(3):10.
    [8] 许金良,杨少伟,徐其福.互通式立交平面线形控制线元法[J].西安公路交通大学学报,1997,17(4):5.
    [9] 李方.立交匝道布线的积木法[J].东南大学学报,1993,23(4):25.
    [10] 吴国雄,任长吉,李方.立交平面线形设计的一种曲线型辅助设计方法-积木法[J].重庆交通学院学报,1994,13(3):24.
    [11] 缪鹍,詹振炎.基于线元的公路平面线形交互设计方法研究[J].中国公路学报,2001,14(3):25.
    [12] 杨少伟,张乃苍.公路平面线形设计方法的研究[J].中国公路学报,1993,6(3):8.
    [13] 张航,韦金君,张肖磊.道路平面线形拟合方法比较研究[J].武汉理工大学学报(交通科学与工程版),2018,42(4):594.
    [14] 吴国雄.一种新的公路平面线型设计方法-综合法[J].重庆交通学院学报,1996,15(增):59.
    [15] 王福建,李方,邓学钧.端点受限的立交平面线形设计方法研究[J].中国公路学报,1995,8(4):26.
    [16] HAMILTON I,HIMES S,PORTER R J,et al. Safety evaluation of horizontal alignment design consistency on rural two-lane highways[J].Transportation Research Record,2019,2673(2):628.
    [17] SULIMAN G,KARIM E B,JOSEPH S. Automated extraction of horizontal curve attributes using LiDAR data[J].Journal of the Transportation Research Board,2018,2672(39):98.
    [18] CAMACHO-TORREGROSA F J,PEREZ-ZURIAGA A M,CAMPOY-UNGRIA J M, et al. Use of heading direction for recreating the horizontal alignment of an existing road[J].Computer-Aided Civil and Infrastructure Engineering,2015,30(4):282.
    [19] 李玉华,周长红,赵延庆,等.一种道路路线平面线形设计的“两点”线元法:中国,ZL201610341818.9[P].2016-10.
    [20] 白芳舒.两点线元法在互通式立交平面线形设计的应用[D].大连:大连理工大学,2016.
    [21] 西安经天交通工程技术研究所.纬地道路交通辅助设计系统教程[EB/OL].[2019-08-15].http://www.hintcad.cn/soft_down.php?cat_id=1135.
    [22] MANIEI F,ARDEKANI S. Application of ellipse for horizontal alignment[J].International Journal of Computational Engineering Research,2013,3(1):35.
    [23] 蔡华辉,王国瑾.三次C-Bézier螺线构造及其在道路设计中的应用[J].浙江大学学报,2010(1):68.
    [24] KOBRY A. New solutions for general transition curves[J].Journal of Surveying Engineering,2014,140(1):12.
    [25] ELIOU N, KALIABETSOS G. A new, simple and accurate transition curve type, for use in road and railway alignment design[J]. Eur. Transp. Res.,2014(6):171.
    [26] BOSURGI G, D'ANDREA A. A polynomial parametric curve(PPC-CURVE) for the design of horizontal geometry of highways[J]. Computer-Aided Civil and Infrastructure Engineering,2012,27(4):303.
    [27] EASA S M, MEHMOOD A. Establishing highway horizontal alignment to maximize design consistency[J]. Canadian Journal of Civil Engineering,2007,34(9):1159.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李玉华,孙依人,刘佳音,周长红,王光远,陈静云.路线平面线形设计计算的两点线元法原理[J].同济大学学报(自然科学版),2021,49(4):507~516

复制
分享
文章指标
  • 点击次数:499
  • 下载次数: 1496
  • HTML阅读次数: 874
  • 引用次数: 0
历史
  • 收稿日期:2020-09-09
  • 在线发布日期: 2021-05-11
文章二维码