利用毫米波雷达测量系统的高铁车桥振动检测
CSTR:
作者:
作者单位:

1.中国矿业大学 江苏省资源环境信息工程重点实验室, 江苏 徐州 221116;2.天津市测绘院有限公司, 天津 300381;3.河海大学 地球科学与工程学院, 江苏 南京 211100

作者简介:

刘志平:提出研究思路、实验方案/数据采集和论文撰写。罗翔:实验数据采集/处理、文献查新和论文撰写。何秀凤:论文修改。

通讯作者:

刘志平(1982-),男,副教授,工学博士、主要从事测量误差理论与反演、导航定位与传感技术研究。 Email:zhpliu@cumt.edu.cn.

中图分类号:

P228

基金项目:

国家自然科学基金重点项目(41730109, 41830110);国家自然科学基金面上项目(41771416)


Vibration Detection of High-speed Railway Bridge Using Millimeter Wave Radar Measurement System
Author:
Affiliation:

1.Key Laboratory for Resources and Environment Information Engineering of Jiangsu Province, China University of Mining and Technology, Xuzhou 221116, China;2.Tianjin Institute of Surveying and Mapping Co. Ltd. Tianjin 300381,China;3.School of Earth Science and Engineering, Hohai University, Nanjing 211100, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对高速铁路桥梁的实时高精度、非接触振动检测需求,以车桥竖向振动理论解析结果为参考提出了毫米波雷达精密测距改进算法,进而基于IWR1 443芯片开发了毫米波雷达测量系统并实现了振动信号采集、解码及处理一体化。最后利用该系统开展了京沪线濉河特大桥徐州段32m简支梁桥振动检测试验和动态挠度计算及时频分析。结果显示,广义S变换和标准时频变换提取的三维谱阵揭示了高速列车动载下桥梁振动过程,竖向挠度、跨挠比和振动主频及类型均与理论分析一致且远高于《高速铁路设计规范》现行限值,表明所检测桥梁结构健康状况良好的同时验证了毫米波雷达车桥振动检测的准确性和有效性。

    Abstract:

    To meet the real-time, high-precision and non-contact vibration detection requirements of high-speed railway bridge, this paper investigates the theory of vertical vibration model of bridge and the precise ranging algorithm of millimeter wave radar. Based on the IWR1443 millimeter wave radar chip, a millimeter wave radar measurement system is developed to realize the integration of vibration signal measurement, acquisition, decoding and processing. Then the vibration detection experiment of 32m simply supported bridges in Xuzhou section of SUIHE super large bridge on Beijing-Shanghai line is carried out with this measurement system, and the data are analyzed by time-frequency analysis method. Analysis results show that the three-dimensional spectrum array, which is extracted by the generalized S-transform and the standard time-frequency transform, reveals the bridge vibration process under the dynamic load of the high-speed train. The dynamic vertical deflection, the deflection span ratio, the main frequencies and vibration type of bridge are determined, which are consistent with the theoretical analysis, and the performance of bridge structure is better than current design limit value of high speed railway. This indicates the SUIHE bridge structure is in good health and verifies the accuracy and effectiveness of millimeter wave radar measurement system.

    参考文献
    [1] 国家统计局. 中国统计年鉴2020年[M]. 北京: 中国统计出版社,2020.
    [2] 孟鑫,王一干,王巍,等.不同刚度的32m简支箱梁动力性能试验分析[J].铁道工程学报,2019,36(9):31.
    [3] 杨宜谦, 姚京川, 孟鑫,等. 时速300~350km高速铁路桥梁动力性能试验研究[J]. 中国铁道科学, 2013, 34(3):14.
    [4] 宋晓东, 邱晓为, 李小珍, 等. 莫-喀高速铁路简支箱梁竖向下限基频研究[J].西南交通大学学报,2019,54(4):709.
    [5] 荆国强, 王波, 柴小鹏, 等. 高速铁路桥梁动力响应监测数据分析方法及其应用[J].桥梁建设,2018,48(2):31.
    [6] HE Xianlong, YANG Xueshan, ZHAO Lizhen. New method for high-speed railway bridge dynamic deflection measurement[J]. Journal of Bridge Engineering, 2014, 19(7):05014004.
    [7] YAN Yu, LIU Hang, LI Dongsheng, et al. Bridge deflection measurement using wireless mems inclination sensor systems[J]. International Journal on Smart Sensing and Intelligent Systems, 2013, 6(1):38.
    [8] LIU Yang, DENG Yang, CAI C. S. Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China[J]. Structural Control and Health Monitoring, 2015, 22: 1408.
    [9] 余加勇. 基于GNSS和RTS技术的桥梁结构健康监测[J].测绘学报,2015,44(10):1177.
    [10] 刘志平, 何秀凤, 张书毕, 等. 结构变形监测的单频GPS动态三差法[J]. 同济大学(自然科学版). 2011, 39(7): 1074.
    [11] TANG Xu, LI Xingxing, ROBERTS G W, et al. 1 Hz GPS satellites clock correction estimations to support high-rate dynamic PPP GPS applied on the Severn suspension bridge for deflection detection [J]. GPS Solutions, 2019,23(2):28.
    [12] 熊春宝, 路华丽, 朱劲松, 等. 基于GPS-RTK和加速度计的桥梁动态变形监测试验[J].振动与冲击,2019,38(12):69.
    [13] 徐进军, 郭鑫伟, 廖骅, 等. 基于地面三维激光扫描的桥梁挠度变形测量[J].大地测量与地球动力学,2017,37(6):609.
    [14] 徐亚明,王鹏,周校,等.地基干涉雷达IBIS-S桥梁动态形变监测研究[J].武汉大学学报(信息科学版),2013,38(7):845.
    [15] ZHANG Congrui, GE Yongxiang, HU Zhongchun, et al. Research on deflection monitoring for long span cantilever bridge based on optical fiber sensing[J]. Optical Fiber Technology, 2019, 53:1
    [16] 洪伟, 余超, 陈继新, 等. 毫米波与太赫兹技术[J]. 中国科学:信息科学. 2016,46(8): 1086.
    [17] 贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2019,41:1.
    [18] 李小珍, 张志俊, 刘全民. 任意移动荷载列作用下简支梁桥竖向振动响应解析分析[J]. 振动与冲击, 2012(20):142.
    [19] SCHERR S , AYHAN S , FISCHBACH B , et al. An efficient frequency and phase estimation algorithm with CRB performance for FMCW Radar applications [J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(7):1868.
    [20] 陈学华, 贺振华, 黄德济, 等. 时频域油气储层低频阴影检测[J]. 地球物理学报,2009,52(1):215.
    [21] LIU Lintao, Houtse HSU . Inversion and normalization of time-frequency transform [J]. Applied Mathematics and Information Sciences,2012,6(1):67.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘志平,罗翔,何秀凤.利用毫米波雷达测量系统的高铁车桥振动检测[J].同济大学学报(自然科学版),2021,49(4):561~568

复制
分享
文章指标
  • 点击次数:617
  • 下载次数: 1263
  • HTML阅读次数: 604
  • 引用次数: 0
历史
  • 收稿日期:2020-05-02
  • 在线发布日期: 2021-05-11
文章二维码