大型桥梁施工风险动态评估
作者:
作者单位:

1.西南交通大学 土木工程学院, 四川 成都 610031;2.中国铁路上海局集团有限公司 南京铁路枢纽工程建设指挥部, 江苏 南京 200142

作者简介:

施 洲:通信作者,提出动态评估模型,对论文提出了建设性建议,并作修改。纪 锋:工程现场调研,扩展完善动态评估模型,撰写论文初稿并修改。余万庆:工程现场调研,处理专家调查数据,修改论文。韦庆东:协调大桥施工现场风险调研,邀请并组织专家对评估中关联度和贝叶斯网概率进行打分评定。

通讯作者:

第一作者: 施 洲(1979—),男,副教授,工学博士,主要研究方向为桥梁结构试验与运营性能评定。 E-mail:zshi1979@swjtu.edu.cn

中图分类号:

U445

基金项目:

中国铁路总公司科技研究开发计划重大课题(2017G006?A)


Dynamic Risk Assessment of Large Bridge Construction
Author:
Affiliation:

1.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031,China;2.Construction Headquarter of Nanjing Railway Terminal Project, Chinese Shanghai Railway Bureau Group Co., Ltd. ,Nanjing 200142,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大型桥梁施工风险动态评估问题,采用结构?风险分解识别法完成风险元初步识别,引入决策与实验室方法识别动态评估风险元并构建风险元传递网,最后结合贝叶斯网络及GeNIe软件对风险元传递网进行贝叶斯概率计算,并结合逆向推理和敏感性分析获得关键风险元及主要风险链。采用该方法开展五峰山长江大桥施工全过程风险动态评估。结果表明,全桥评估中共识别出234个动态评估风险元,辨析出104个关键风险元及相关主要风险链。计算出施工前及主梁完成后“高速铁路行车安全”风险概率值分别为0.065 2、0.009 1,对应的关键风险元为沉井不均匀沉降、主缆线形偏差等,主要风险链为:沉井不均匀沉降→锚体变位→锚固系统变位→主缆线形偏差→吊索不均匀变形→主梁线形变化→铁路桥面平顺性不足→高速铁路行车安全。

    Abstract:

    To solve the problem of dynamic changes in risk assessment of large-scale bridge engineering, the structure-risk decomposition identification method was used to complete the preliminary identification of risk elements. Beside the DEMATEL was introduced to identify dynamic assessment risk elements, and the risk element transmission network was extracted. Moreover, Bayesian network and Genie software were applicated together with the reverse reasoning and sensitivity analysis to perform Bayesian probability calculation on the risk element transfer network, for obtaining the main risk element transfer chain and the key risk elements. This method was used to conduct the dynamic risk assessment of the whole construction process of the Wufengshan Yangtze River Bridge. The results show that 234 dynamic risk elements, 104 key risk elements and the corresponding main risk chains were identified in the whole bridge construction. The probability values of “high-speed railway driving safety”before construction and after the completion of the main girder were found to be 0.065 2 and 0.009 1 respectively. The related key risk elements are uneven settlement of caisson, linear deviation of main cable and so on. The main risk chain is uneven settlement of caisson →position change of anchor body → displacement of anchoring system → deviation of main cable line shape → uneven deformation of sling → line shape change of main girder → insufficient smoothness of railway bridge surface → driving safety of high-speed railway.

    参考文献
    相似文献
    引证文献
引用本文

施洲,纪锋,余万庆,韦庆冬.大型桥梁施工风险动态评估[J].同济大学学报(自然科学版),2021,49(5):634~642

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-24
  • 出版日期: