钢轨廓形打磨关键环节及智能化实现
作者:
作者单位:

1.同济大学 铁道与城市轨道交通研究院,上海 201804;2.中铁物总运维科技有限公司,北京 100036

作者简介:

王军平(1988—),男,高级工程师,博士生,主要研究方向为轮轨关系及钢轨打磨。 E-mail: wjp0938@163.com

通讯作者:

中图分类号:

U211.5

基金项目:


Key Links and Intelligent Realization of Rail Profile Grinding
Author:
Affiliation:

1.Institute of Rail Transit, Tongji University, Shanghai 201804, China;2.China Railway Materials Operation and Maintenance Technology Co., Ltd. ,Beijing 100036, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对钢轨廓形打磨的实施流程进行了阐述,并对目标廓形设计、打磨模式设计和结果验收评价等关键环节进行了分析,提出了各环节设计方法,开发了相关计算机智能设计程序,基于实际案例,对现场实施效果进行了观测分析。结果表明,对钢轨打磨各关键环节设计方法的优化可大幅提升钢轨打磨作业的针对性;计算机智能化设计程序的开发可大幅提升钢轨打磨方案的设计效率和实施精度; 昆明铁路局广通至大理铁路线采用智能化设计方法打磨后,小半径曲线钢轨和机车轮缘严重磨耗问题得到了有效解决,现场试验与理论分析结果基本吻合。

    Abstract:

    The implementation process of rail profile grinding was described. The key links of target profile design, grinding mode design and result acceptance evaluation were analyzed. The design methods of each link were proposed and the relevant computer intelligent design program was developed. The on-site implementation effects were observed and analyzed based on actual cases. The results show that the optimization of the design methods for each key link of rail grinding can greatly improve the pertinence of rail grinding operation. The development of computer intelligent design program can greatly improve the design efficiency and implementation accuracy of rail grinding schemes. After the intelligent design methods were adopted in the Guangtong-Dali Line of Kunming Railway Bureau, the serious wear problems of small radius curve rail and locomotive wheel flange were effectively solved, the results of field test and theoretical analysis are basically consistent. The application of this method can effectively control the wear of rail and wheel, prolong the service life of rail and delay the wheel turning cycle.

    参考文献
    相似文献
    引证文献
引用本文

王军平,沈钢,毛鑫,蒋俊.钢轨廓形打磨关键环节及智能化实现[J].同济大学学报(自然科学版),2021,49(5):680~686

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-24
  • 出版日期:
文章二维码