基于因子图模型的用户可信度评估
CSTR:
作者:
作者单位:

西北工业大学 计算机学院,陕西 西安 710072

作者简介:

白 昀(1985—),女,讲师,工学博士,主要研究方向为社交网络的信任模型以及概率图。 E-mail: 395943619@qq.com

中图分类号:

TP391

基金项目:

陕西省教育厅专项科学研究计划(19JK0526);榆林市科技计划项目(2016-24-4);陕西省科技厅专项科学研究计划(2021JQ-576)


User Credibility Evaluation Method Based on Factor Graph Model
Author:
Affiliation:

School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为克服传统方法在缺少用户个人信息及发布内容的情况下无法有效地评估用户可信度问题,提出基于评论反馈信息和信任关系的用户可信度因子图模型(UFGM)。该模型将信任关系和评论反馈对用户可信度评估的影响形式化为一个概率模型,并提出半监督分类的学习方法构建模型。在Extended Epinions数据集上验证了模型的有效性,并发现信任关系比评论反馈更易对用户可信度评估产生积极影响。与传统算法相比,UFGM能在缺少用户描述信息及评论信息的情况下将用户可信度评估的准确度提高12%~29%。

    Abstract:

    In order to overcome the inability of traditional methods to effectively evaluate user credibility in the absence of user personal information and published content, a user credibility factor graph model (UCFGM) based on comment feedback and trust relationship is proposed, which formalized the influence of trust relationship and comment feedback on user credibility evaluation into a probability model, and proposed a semi-supervised classification learning method to build the model. The effectiveness of the model is verified on the Extended Epinions dataset, and it is found that the trust relationship is more likely to have a positive impact on user credibility evaluation than comment feedback. Compared with traditional algorithms, UCFGM can improve the accuracy of user credibility evaluation by 12% to 29% in the absence of user description and comment information.

    参考文献
    [1] SHANG F, LIU Y, CHENG J, et al. Fuzzy double trace norm minimization for recommendation systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 2039.
    [2] MUKHERJEE A, LIU B, GLANCE N. Spotting fake reviewer groups in consumer reviews[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon: ACM, 2012: 191-200.
    [3] WANG G, XIE S, LIU B, et al. Review graph based online store review spammer detection[C]//2011 IEEE 11th International Conference on Data Mining. Vancouver: IEEE, 2011: 1242-1247.
    [4] CUI L, PI D, ZHANG J. Dmfasr: Deeper membership and friendship awareness for social recommendation[J]. IEEE Access, 2017, 5: 8904.
    [5] YAN S, LIN K J, ZHENG X, et al. An approach for building efficient and accurate social recommender systems using individual relationship networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2086.
    [6] MAO M, LU J, ZHANG G, et al. Multi-relational social recommendations via multigraph ranking[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4049.
    [7] YE J, AKOGLU L. Discovering opinion spammer groups by net-work footprints[C]// Joint European Conference on Machine Learning & Knowledge Discovery in Databases. [S.l.]: Springer, 2015:267-282.
    [8] CHOO E, YU T, CHI M. Detecting opinion spammer groups through community discovery and sentiment analysis[C]//IFIP Annual Conference on Data and Applications Security and Privacy. [S.l.]: Springer, 2015: 170-187.
    [9] WANG Z, HOU T, SONG D, et al. Detecting review spammer groups via bipartite graph projection[J]. The Computer Journal, 2016, 59(6): 861.
    [10] AYDAY E, FEKRI F. Iterative trust and reputation management using belief propagation[J]. IEEE Transactions on Dependable and Secure Computing, 2012, 9(3): 375.
    [11] WANG X, WANG X, CHE H, et al. An intelligent economic approach for dynamic resource allocation in cloud services[J]. IEEE Transactions on Cloud Computing, 2015, 3(3): 275.
    [12] JAYASINGHE U, LEE G M, UM T W, et al. Machine learning based trust computational model for IoT services[J]. IEEE Transactions on Sustainable Computing, 2019, 4(1): 39.
    [13] GUPTA A, KUMARAGURU P. Credibility ranking of tweets during high impact events[C]//Proceedings of the 1st workshop on privacy and security in online social media. Lyon: ACM, 2012: 2-8.
    [14] JOSANG A, ISMAIL R. The beta reputation system[C]//Proceedings of the 15th Bled Electronic Commerce Conference. Bled: AIS e-library, 2002, 5: 2502-2511.
    [15] WANG A H. Detecting spam bots in online social networking sites: A machine learning approach[J]. Data & Applications Security & Privacy XXIV, 2010, 6166:335.
    [16] WANG G, XIE S, LIU B, et al. Identify online store review spammers via social review graph[J]. ACM Transactions on Intelligent Systems & Technology, 2012, 3(4):1.
    [17] CHU Z, GIANVECCHIO S, WANG H, et al. Detecting automation of twitter accounts: Are you a human, bot, or cyborg?[J]. IEEE Transactions on Dependable & Secure Computing, 2012, 9(6):811.
    [18] ZHANG Q, WU J, ZHANG P, et al. Collective hyping detection system for identifying online spam activities[J]. IEEE Intelligent Systems, 2017, 32(5): 53.
    [19] JINDAL N, LIU B. Opinion spam and analysis[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. Lyon: ACM, 2008: 219-230.
    [20] HAMMERSLEY J M, CLIFFORD P. Markov fields on finite graphs and lattices[J]. Unpublished Manuscript, 1971:46.
    [21] MURPHY K P, WEISS Y, JORDAN M I. Loopy belief propagation for approximate inference: An empirical study[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1999: 467-475.
    [22] GUPTA M, ZHAO P, HAN J. Evaluating event credibility on twitter[C]//Proceedings of the 2012 SIAM International Conference on Data Mining. Anaheim: Society for Industrial and Applied Mathematics, 2012: 153-164.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白昀,蔡皖东.基于因子图模型的用户可信度评估[J].同济大学学报(自然科学版),2021,49(6):908~914

复制
分享
文章指标
  • 点击次数:330
  • 下载次数: 1179
  • HTML阅读次数: 317
  • 引用次数: 0
历史
  • 收稿日期:2020-10-20
  • 在线发布日期: 2021-07-05
文章二维码