跟驰模型场景基准分析
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室, 上海 201804

作者简介:

李瑞杰(1993—),男,博士生,主要研究方向为交通流理论。E-mail: lrj347407604@foxmail.com

通讯作者:

李林波(1974—),男,副教授,博士生导师,工学博士,主要研究方向为交通规划、交通拥挤管理等。 E-mail: llinbo@tongji.edu.cn

中图分类号:

U491.1

基金项目:

国家重点研发计划(2018YFE0102800)


Scenario-based Benchmark Analysis for Car-following Models
Author:
Affiliation:

Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    设计包含7种驾驶工况的自由流场景及跟驰场景,对MITSIM(microscopic traffic simulator)、Gipps模型、Wiedemann模型、FVD(full velocity difference)模型、IDM(intelligent driver model)、S?K模型及LCM(longitudinal control model)7个不同机理下典型跟驰模型进行基准测试。结果表明:各模型均可在一定程度上完成自由流场景下各工况测试,其中LCM的表现最符合认知,IDM的加速度最小且启动时间最长;仅Gipps模型、FVD模型、IDM及S?K模型可完成跟驰场景下各工况测试,其中FVD模型对于前车的状态变化具有最及时的反应;S?K模型在跟驰场景各工况下的速度与加速度始终处于微小振荡中,这也较为符合实际驾驶情景。

    Abstract:

    Seven typical car-following models under different mechanisms, including microscopic traffic simulator(MITSIM)、Gipps model、Wiedemann model、full velocity difference(FVD) model、intelligent driver model(IDM)、S-K model and longitudinal control model(LCM), were tested under seven designed driving regimes. It is shown that each model is able to complete three free flow regimes to a certain extent, and the performance of LCM is consistent with the cognition rather than the other models. IDM has the smallest value of acceleration and the longest acceleration process. Only Gipps model, FVD model, IDM, and S-K model are able to complete four car-following regimes, among which FVD model has the most timely response to the state change of preceding vehicle. The speed and acceleration of S-K model are always in a slight oscillation under seven driving regimes, which is in line with the actual driving situation.

    参考文献
    相似文献
    引证文献
引用本文

李瑞杰,李林波,李杨,邹亚杰.跟驰模型场景基准分析[J].同济大学学报(自然科学版),2021,49(7):922~932

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-29
  • 出版日期:
文章二维码