异构交通场景下的宏观交通流建模
CSTR:
作者:
作者单位:

交通运输部 公路科学研究院,北京 100088

作者简介:

郭宇奇(1986—),男,助理研究员,工学博士,主要研究方向为复杂交通网络建模、智能交通控制。 E-mail: gyq@itsc.cn

通讯作者:

侯德藻(1975—),男,研究员,工学博士,主要研究方向为智能交通、交通安全。 E-mail: hdz@itsc.cn

中图分类号:

U491

基金项目:

国家重点研发计划(2018YFE0102800)


Macroscopic Traffic Flow Modeling Under Heterogeneous Traffic Condition
Author:
Affiliation:

Research Institute of Highway, Ministry of Transport, Beijing 100088, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了基于动态图混杂自动机与改进的元胞传输模型相结合的建模方法。通过对不同自动驾驶车辆混入率下路段的流量和密度进行三角基本图拟合,讨论了临界拥堵密度、通行能力、反向波速等主要参数的变化规律,并基于此改进了传统的元胞传输模型;利用动态图混杂自动机表征路网分层递阶的拓扑结构,并将改进的元胞传输模型嵌入动态图混杂自动机来建立异构场景下的宏观交通流模型。利用OpenModelica搭建了仿真平台,验证了该建模方法的有效性。结果表明:随着自动驾驶车辆混入率的增加,路段的临界拥堵密度、最大通行能力和反向波速等都有较为显著的变化。

    Abstract:

    A modeling method of dynamic graph hybrid automata combined with an improved cell transmission model was proposed. Based on the triangular fundamental diagram fitting results of flow volume and density of road segment under different mixing ratios of automated driving vehicles, the variation rules of critical congestion density, traffic capacity, reverse wave velocity and other main parameters were discussed, and the traditional cell transmission model was improved. The dynamic graph hybrid automata was used to characterize the hierarchical topology of road network, and the improved cell transmission model was embedded into the dynamic graph hybrid automata to establish a macroscopic traffic flow model under heterogeneous traffic condition. Finally, simulation platform was built by using the OpenModelica software to verify the effectiveness of the modeling method. The results show that with the increase of the mixing ratio of automated driving vehicles, the critical congestion density, maximum traffic capacity and reverse wave velocity of road segment all have significant changes.

    参考文献
    [1] 秦严严. 智能网联环境下异质交通流特性分析方法研究[D]. 南京: 东南大学, 2019.
    [2] 秦严严, 王昊, 王炜. 智能网联环境下的混合交通流LWR模型[J]. 中国公路学报, 2018, 31(11):151.
    [3] NGODUY D. Application of gas-kinetic theory to modelling mixed traffic of manual and ACC vehicles[J]. Transportmetrica, 2012, 8(1):43.
    [4] FAN S, HERTY M, SEIBOLD B.Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model[J]. Networks & Heterogeneous Media, 2014, 9(2):239.
    [5] WANG R, LI Y, WORK D B. Comparing traffic state estimators for mixed human and automated traffic flows[J]. Transportation Research, Part C: Emerging Technologies, 2017, 78: 95.
    [6] DAGANZO C F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research, Part B: Methodological, 1994, 28(4): 269.
    [7] DAGANZO C F. The cell transmission model, PartⅡ: network traffic[J]. Transportation Research, Part B: Methodological, 1995, 29(2): 79.
    [8] TIAPRASERT K, ZHANG Y, ASWAKUL C, et al. Closed-form multiclass cell transmission model enhanced with overtaking, lane-changing, and first-in first-out properties[J]. Transportation Research, Part C: Emerging Technologies, 2017, 85: 86.
    [9] 李志伟. 智能网联车辆与普通车辆混合车流交通状态估计方法研究[D]. 南京: 东南大学, 2017.
    [10] LEVIN M W, BOYLES S D. A cell transmission model for dynamic lane reversal with autonomous vehicles[J]. Transportation Research, Part C: Emerging Technologies, 2016,68:126.
    [11] LEVIN M W,BOYLES S D, et al. A multiclass cell transmission model for shared human and autonomous vehicle roads[J]. Transportation Research, Part C: Emerging Technologies, 2016, 62:103.
    [12] QIN Y, WANG H. Cell transmission model for mixed traffic flow with connected and autonomous vehicles[J]. Journal of Transportation Engineering, Part A: Systems, 2019, 145(5): 04019014.
    [13] 秦严严, 王昊, 王炜, 等. 混有CACC车辆和ACC车辆的异质交通流基本图模型[J]. 中国公路学报, 2017, 30(10): 127.
    [14] HARARY F, GUPTA G. Dynamic graph models[J]. Mathematical & Computer Modelling, 1997, 25(7):79.
    [15] LUNZE J, LAMNABHI-LAGARRIGUE F. Handbook of hybrid systems control: theory, tools, applications[M]. Cambridge: Cambridge University Press, 2009.
    [16] HENZINGER T A. Verification of digital and hybrid systems[M]. Berlin/Heidelberg: Springer, 2000.
    [17] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805.
    [18] CHEN Y Z, GUO Y Q, WANG Y. Modeling and density estimation of an urban freeway network based on dynamic graph hybrid automata[J]. Sensors, 2017, 17(4):716.
    [19] GUO Y. Dynamic-model-based switched proportional-integral state observer design and traffic density estimation for urban freeway[J]. European Journal of Control, 2018, 44:103.
    [20] FRITZSON P, MODELICA. A cyber-physical modeling language and the OpenModelica environment[C]// Proceedings of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC). Piscataway: Institute of Electrical and Electronics Engineers, 2011: 1648-1653.
    [21] DEMPSEY M. Dymola for multi-engineering modelling and simulation[C]// Proceedings of the IEEE Vehicle Power and Propulsion Conference. Piscataway: Institute of Electrical and Electronics Engineers, 2006: 1-6.
    [22] 张二青. 基于Modelica语言的交通信息物理系统建模分析与仿真实现[D]. 北京: 北京工业大学, 2015.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭宇奇,侯德藻,李一丁,衣倩,黄烨然.异构交通场景下的宏观交通流建模[J].同济大学学报(自然科学版),2021,49(7):949~956

复制
分享
文章指标
  • 点击次数:471
  • 下载次数: 1995
  • HTML阅读次数: 585
  • 引用次数: 0
历史
  • 收稿日期:2021-04-10
  • 在线发布日期: 2021-07-29
文章二维码