基于激光雷达的停车场车辆定位算法
作者:
作者单位:

1.同济大学 汽车学院,上海 201804;2.同济大学 中德学部,上海 201804

作者简介:

周 苏(1961—),男,教授,博士生导师,工学博士,主要研究方向为新型车辆动力系统、燃料电池系统建模仿真及控制。E-mail: suzhou@tongji.edu.cn

通讯作者:

李伟嘉(1993—),男,硕士生,主要研究方向为自动驾驶高精度定位技术、高精度地图以及车用SLAM技术。E-mail: lwj19931221@163.com

中图分类号:

U469.79

基金项目:


Lidar-based Localization Algorithm of Vehicle in Parking Lot
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201804, China;2.Chinesisch-Deutsche Hochschule, Tongji University, Shanghai 201804, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在停车场、隧道中GPS、Wi-Fi信号受限的情况下,提出一种基于激光雷达的车辆自主定位方法。采用激光雷达SLAM(simultaneous localization and mapping)算法,通过三维激光雷达点云匹配获取车辆的估计位姿;根据图优化方法和非线性优化方法,对所有位姿进行后端调整,进而得到分辨率可控的环境信息平面栅格地图;基于蒙特卡洛方法,采用粒子滤波器进行实时车辆定位,并提出了粒子采样的一种改善方式,实现了较高精度的激光雷达自主定位。结果表明:粒子滤波器能够有效地实现车辆在停车场等无GPS环境下的定位,定位精度在10 cm之内。

    Abstract:

    Under the limit of car localization sensors such as GPS and Wi-Fi in parking lots and tunnels, an autonomous self-localization method of vehicle based on lidar is proposed. The lidar simultaneous localization and mapping (SLAM) algorithm is used to obtain the estimated pose of vehicle through three-dimensional lidar point cloud matching, and all poses are adjusted according to the graph optimization method and the nonlinear optimization method. Then, a planar grid map of environmental information with controllable resolution is obtained. Based on the Monte Carlo method, a particle filter is adopted for real-time vehicle localization, and an improved method of particle sampling is proposed to achieve real-time high-precision autonomous localization of vehicle. Experimental results show that the particle filter can effectively realize the localization of vehicles in parking lot and other non-GPS environments, and the localization accuracy is within 10 cm.

    参考文献
    相似文献
    引证文献
引用本文

周苏,李伟嘉,郭军华.基于激光雷达的停车场车辆定位算法[J].同济大学学报(自然科学版),2021,49(7):1029~1038

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-29
  • 出版日期:
文章二维码