基于刚‒柔耦合的反铲液压挖掘机工作装置多体动力学分析与仿真
CSTR:
作者:
作者单位:

1.同济大学 机械与能源工程学院,上海 201804;2.三一重机有限公司 小挖研究院,江苏 昆山 215300

作者简介:

刘广军(1979—),男,教授,博士生导师,工学博士,主要研究方向为智能建造装备关键技术。 E-mail: gjliu@126.com

中图分类号:

TH137

基金项目:

国家重点研发计划(2019YFB2005102);上海市自然科学基金(18ZR1441000)


Multi-body Dynamic Analysis and Simulation of Backhoe Hydraulic Excavator Working Device Based on Rigid-flexible Coupling
Author:
Affiliation:

1.School of Mechanical Engineering, Tongji University, Shanghai 201804, China;2.Small Excavator Research Institute, SANY Heavy Machinery Co., Ltd., Kunshan 215300, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以某型挖掘机为研究对象,建立其工作装置及挖掘阻力数学模型。针对土方、石方挖掘工况,采用压力传感器、位移传感器测得挖掘过程中各油缸的压力及位移,采用电阻应变片测出动臂与斗杆上各测点的应力。基于所获得的各油缸位移及压力,通过动力学分析计算载荷。使用有限元分析软件和动力学仿真软件建立挖掘机刚?柔耦合模型,并以各油缸位移曲线为驱动,得到动臂及斗杆上各点应力。仿真计算与应力测试的对比结果表明,对应测点的应力变化趋势基本一致,误差在15%以内。

    Abstract:

    By taking a certain type of excavator as the research object, a working device is set up and a mathematical model of digging resistance is established. Firstly, the pressure and the displacement of each cylinder during excavation are tested by pressure sensor and displacement sensor, and the stress of the boom and arm at each measuring point is measured by resistance strain gauge in the working conditions of soil and stone excavation. Secondly, the loads are calculated by dynamic analysis based on the displacement and pressure of each cylinder. Finally, the rigid-flexible coupling model of the excavator is built by using finite element software and dynamic simulation software. Driven by the displacement curve of each cylinder, the stress of the boom and arm at each measuring point is obtained. It is shown that simulation results and test results of the stress have the same trend, and the error is less than 15%.

    参考文献
    [1] 刘畅,孙健,杨鹏程.液压挖掘机工作装置联合仿真研究[J].机电工程技术, 2020,49(4):11.
    [2] LI Ying, FRIMPONG S, LIU Wenyuan. Virtual prototype modeling and simulation of pipe wagon articulating system[J]. Modern Mechanical Engineering,2011,1(2): 38.
    [3] 张桂菊, 肖才远, 谭青, 等. 基于虚拟样机技术挖掘机工作装置动力学分析及仿真[J]. 中南大学学报(自然科学版), 2014, 45(6): 1827.
    [4] 张卫国, 权龙, 程珩, 等. 基于真实载荷的挖掘机工作装置瞬态动力学分析[J]. 机械工程学报, 2011, 47(12): 144.
    [5] 吴金林. 反铲液压挖掘机工作装置刚柔耦合仿真与优化[D]. 西安: 长安大学, 2015.
    [6] 葛磊, 董致新, 李运华, 等. 系列化液压挖掘机数字样机研究[J]. 机械工程学报, 2019, 55(14): 186.
    [7] 夏连鹏, 权龙, 张晓刚, 等. 液气复合驱动液压挖掘机动臂运行特性及能效[J]. 机械工程学报, 2017, 53(20): 176.
    [8] 窦伟元, 张乐乐, 张海峰, 等. 基于刚柔耦合动力学模型的高速列车铸铝横梁应力状态分析[J]. 机械工程学报, 2020, 56(2): 138.
    [9] 张立军, 闫国明, 孟德建, 等. 底盘角系统制动颤振多体动力学建模与分析[J]. 同济大学学报(自然科学版), 2018, 46(5): 639.
    [10] ZOU Zhihong, CHEN Jin, PANG Xiaoping. Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil-bucket interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2019, 233(3): 598.
    [11] ARSI? D, GNJATOVI? N, SEDMAK S, et al. Integrity assessment and determination of residual fatigue life of vital parts of bucket-wheel excavator operating under dynamic loads[J]. Engineering Failure Analysis, 2019, 105: 182.
    [12] 郁录平, 路宇, 向岳山, 等. 液压挖掘机铲斗载荷的测试方法[J]. 中国工程机械学报, 2016, 14(3): 267.
    [13] 赵斌, 权龙, 黄家海, 等. 大型液压铲上车回转驱动系统及特性研究[J]. 机械工程学报, 2017, 53(6):176.
    [14] KIM J, JIN M, CHOI W, et al. Discrete time delay control for hydraulic excavator motion control with terminal sliding mode control[J]. Mechatronics, 2019, 60: 15.
    [15] 李泽鹏, 权龙, 葛磊, 等. 液电混合驱动液压挖掘机动臂特性及能效研究[J]. 机械工程学报, 2018, 54(20): 213.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘广军,刘可臻,孙波,张忆宁.基于刚‒柔耦合的反铲液压挖掘机工作装置多体动力学分析与仿真[J].同济大学学报(自然科学版),2021,49(7):1053~1060

复制
分享
文章指标
  • 点击次数:355
  • 下载次数: 865
  • HTML阅读次数: 234
  • 引用次数: 0
历史
  • 收稿日期:2020-12-06
  • 在线发布日期: 2021-07-29
文章二维码