求解线性方程组稀疏解的稀疏贪婪随机Kaczmarz算法
作者:
作者单位:

同济大学 数学科学学院,上海 200092

作者简介:

王 泽(1998—),男,博士生,主要研究方向为数值代数与科学计算。 E-mail: math_wangze@tongji.edu.cn

通讯作者:

殷俊锋(1979—),男,教授,博士生导师,理学博士,主要研究方向为数值代数与科学计算。 E-mail: yinjf@tongji.edu.cn

中图分类号:

O241.6

基金项目:

国家自然科学基金(11971354)


Sparse Greedy Randomized Kaczmarz Method for Sparse Solutions to Linear Equations
Author:
Affiliation:

School of Mathematical Sciences, Tongji University, Shanghai 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    求解线性方程组的稀疏解在图像重构、信号处理和机器学习等领域中具有广泛的应用,通过引入l1-范数正则化,可以转化为求解一个约束优化问题。基于一种选择系数矩阵工作行的概率准则,提出了稀疏贪婪随机Kaczmarz算法,并给出了有噪声干扰和无噪声干扰情况下该算法的收敛性分析。理论表明本文算法的收缩因子小于随机稀疏Kaczmarz算法的收缩因子。数值实验验证了本文算法的有效性。

    Abstract:

    The sparse solution to linear equations has been widely used in image reconstruction, signal processing, and machine learning. By introducing l1 norm regularization, it can be transformed into solving a constrained optimization problem. Based on a novel probability criterion for selecting the working rows from the coefficient matrix, a sparse greedy randomized Kaczmarz method was proposed, and the convergence analysis of the novel method with and without noise interference were conducted, which showed that the convergence factor of the novel method was smaller than that of the randomized sparse Kaczmarz method. The numerical experiments verified the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

王泽,殷俊锋.求解线性方程组稀疏解的稀疏贪婪随机Kaczmarz算法[J].同济大学学报(自然科学版),2021,49(11):1505~1513

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-29
  • 出版日期:
文章二维码