求解大型线性最小二乘问题的贪婪Gauss-Seidel方法
CSTR:
作者:
作者单位:

重庆大学 数学与统计学院, 重庆 401331

作者简介:

李寒宇(1981—), 男, 教授, 博士生导师, 理学博士, 主要研究方向为随机数值代数与张量计算。 E-mail: hyli@cqu.edu.cn

中图分类号:

O241.6

基金项目:

国家自然科学基金(11671060);重庆市自然科学基金(cstc2019jcyj-msxmX0267)


A Greedy Gauss-Seidel Method for Solving the Large Linear Least Squares Problem
Author:
Affiliation:

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    参考文献
    [1] BJ?RCK ?. Numerical methods for least squares problems [M]. Philadelphia:Society for Industrial and Applied Mathematics, 1996.
    [2] HIGHAM N J. Accuracy and stability of numerical algorithms [M]. Philadelphia:Society for industrial and applied mathematics, 2002.
    [3] SAAD Y. Iterative methods for sparse linear systems [M]. Philadelphia:Society for Industrial and Applied Mathematics, 2003.
    [4] HEFNY A, Needell D, Ramdas A. Rows versus columns: Randomized Kaczmarz or Gauss-Seidel for ridge regression [J]. SIAM Journal on Scientific Computing, 2017, 39(5): S528.
    [5] STROHMER T, VERSHYNIN R. A randomized Kaczmarz algorithm with exponential convergence [J]. Journal of Fourier Analysis and Applications, 2009, 15(2): 262.
    [6] LEVENTHAL D, LEWIS A S. Randomized methods for linear constraints: Convergence rates and conditioning [J]. Mathematics of Operations Research, 2010, 35(3): 641.
    [7] MA A, NEEDELL D, RAMDAS A. Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods [J]. SIAM Journal on Matrix Analysis and Applications, 2015, 36(4): 1590.
    [8] EDALATPOUR V, HEZARI D, SALKUYEH D K. A generalization of the Gauss-Seidel iteration method for solving absolute value equations [J]. Applied Mathematics and Computation, 2017, 293: 156.
    [9] TU S, VENKATARAMAN S, WILSON A C, et al. Breaking locality accelerates block Gauss-Seidel [C]//International Conference on Machine Learning. Sydney: PMLR, 2017: 3482-3491.
    [10] CHEN L, SUN D, TOH K C. An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming [J]. Mathematical Programming, 2017, 161(1/2): 237.
    [11] TIAN Z, TIAN M, LIU Z, et al. The Jacobi and Gauss–Seidel-type iteration methods for the matrix equation AXB= C [J]. Applied Mathematics and Computation, 2017, 292: 63.
    [12] XU Y. Hybrid Jacobian and Gauss-Seidel proximal block coordinate update methods for linearly constrained convex programming [J]. SIAM Journal on Optimization, 2018, 28(1): 646.
    [13] DU K. Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms [J]. Numerical Linear Algebra with Applications, 2019, 26(3): e2233.
    [14] RAZAVIYAYN M, HONG M, REYHANIAN N, et al. A linearly convergent doubly stochastic Gauss-Seidel algorithm for solving linear equations and a certain class of over-parameterized optimization problems [J]. Mathematical Programming, 2019, 176(1/2): 465.
    [15] BAI Z Z, WU W T. On greedy randomized coordinate descent methods for solving large linear least-squares problems [J]. Numerical Linear Algebra with Applications, 2019, 26(4): e2237.
    [16] BAI Z Z, WU W T. On greedy randomized Kaczmarz method for solving large sparse linear systems [J]. SIAM Journal on Scientific Computing, 2018, 40(1): A592.
    [17] BAI Z Z, WU W T. On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems [J]. Applied Mathematics Letters, 2018, 83: 21.
    [18] 杜亦疏,殷俊锋,张科.求解大型稀疏线性方程组的贪婪距离随机Kaczmarz方法[J].同济大学学报(自然科学版),2020,48(8):1224.
    [19] NUTINI J. Greed is good: Greedy optimization methods for large-scale structured problems [D]. Vancouver : University of British Columbia, 2018.
    [20] ZHANG J J. A new greedy Kaczmarz algorithm for the solution of very large linear systems [J]. Applied Mathematics Letters, 2019, 91: 207.
    [21] DU K, GAO H. A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm [J]. Numerical Mathematics: Theory, Methods and Applications, 2019, 12(2): 627.
    [22] LIU Y, GU C Q. Variant of greedy randomized Kaczmarz for ridge regression [J]. Applied Numerical Mathematics, 2019, 143: 223.
    [23] NIU Y Q, ZHENG B. A greedy block Kaczmarz algorithm for solving large-scale linear systems [J]. Applied Mathematics Letters, 2020, 104: 106294.
    [24] ZHANG J, GUO J. On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems [J]. Applied Numerical Mathematics, 2020, 157: 372.
    [25] OSBORNE E E. On least squares solution of linar equations [J]. Journal of the Association for Computing Machinery, 1961, 8: 628.
    [26] HADDOCK J, NEEDELL D. On Motzkin’s method for inconsistent linear systems [J]. BIT Numerical Mathematics, 2019, 59(2): 387.
    [27] REBROVA E, NEEDELL D. Sketching for Motzkin’s iterative method for linear systems [C]//53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2019: 271-275.
    [28] MOTZKIN T S, SCHOENBERG I J. The relaxation method for linear inequalities [J]. Canadian Journal of Mathematics, 1954, 6: 393.
    [29] NUTINI J, SEPEHRY B, LARADJI I, et al. Convergence rates for greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality graph [J]. arXiv preprint arXiv,2016:1612.07838.
    [30] PETRA S, POPA C. Single projection Kaczmarz extended algorithms [J]. Numerical Algorithms, 2016, 73(3): 791.
    [31] DU K, SI W, SUN X. Randomized extended average block Kaczmarz for solving least squares [J]. SIAM Journal on Scientific Computing, 2020, 42(6): A3541.
    [32] DU K, SUN X. A doubly stochastic block Gauss-Seidel algorithm for solving linear equations [J]. Applied Mathematics and Computation, 2021, 408: 126373.
    [33] NECOARA I. Faster randomized block Kaczmarz algorithms [J]. SIAM Journal on Matrix Analysis and Applications, 2019, 40(4): 1425.
    [34] LI H, ZHANG Y. Greedy block Gauss-Seidel methods for solving large linear least squares problem [J]. arXiv preprint arXiv, 2020: 2004.02476.
    [35] DAVIS T A, HU Y. The University of Florida sparse matrix collection [J]. ACM Transactions on Mathematical Software (TOMS), 2011, 38(1): 1.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李寒宇,张彦钧.求解大型线性最小二乘问题的贪婪Gauss-Seidel方法[J].同济大学学报(自然科学版),2021,49(11):1514~1521

复制
分享
文章指标
  • 点击次数:242
  • 下载次数: 887
  • HTML阅读次数: 225
  • 引用次数: 0
历史
  • 收稿日期:2021-05-10
  • 在线发布日期: 2021-11-29
文章二维码