基于向量式有限元法的磁浮列车磁力耦合系统建模与数值分析
CSTR:
作者:
作者单位:

1.同济大学 铁道与城市轨道交通研究院,上海 201804;2.同济大学 国家磁浮交通工程技术研究中心,上海 201804;3.香港理工大学 国家轨道交通电气化与自动化工程技术研究中心香港分中心,香港 999077;4.江苏大学 电气信息工程学院,江苏 镇江 212036

作者简介:

孙友刚(1989—),男,副教授,工学博士,主要研究方向为磁浮列车动力学及控制。 E-mail: 1989yoga@tongji.edu.cn

通讯作者:

王素梅(1989—),女,工学博士,主要研究方向为磁浮列车建模。 E-mail: may.sm.wang@polyu.edu.hk

中图分类号:

U237

基金项目:

国家自然科学基金(51905380,52072269);上海市多网多模式轨道交通协同创新中心基金;上海市级科技重大专项(2021SHZDZX0100);中央高校基本科研业务费专项资金


Modeling and Numerical Analysis of Maglev Train Magnetic Coupling System Based on Vector Form Intrinsic Finite Element Method
Author:
Affiliation:

1.Institute of Rail Transit, Tongji University,Shanghai 201804,China;2.National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China;3.National Rail Transit Electrification and Automation Engineering Technology Research Center, Hong Kong Branch, The Hong Kong Polytechnic University, Hong Kong 999077, China;4.School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212036, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对中低速磁浮列车悬浮系统,基于向量式有限元法建立可变刚度的高架轨道梁模型,同时基于牛顿力学方程建立车辆系统模型,并通过可控悬浮电磁力将2个模型耦合。以轨道梁的跨中位移、梁端转角、振动加速度以及悬浮间隙偏差值为重要指标,从所提出的车?桥磁力耦合模型出发,通过数值仿真得到磁浮列车及轨道线路相应结构构件的振动响应及位移变形响应规律。最后,通过全尺寸磁浮列车现场试验初步验证所提出的磁力耦合模型的有效性。

    Abstract:

    For the levitation system of medium-low speed maglev train, an elevated rail beam model with variable stiffness based on vector form intrinsic finite element method and a vehicle system model based on Newtonian mechanics equations were established. The two models were coupled by controllable levitation electromagnetic force. Then, the mid-span displacement of rail beam, the angle of beam end, the vibration acceleration and the deviation of suspended airgap were taken as the important indexes. The vibration response and the displacement deformation response of the corresponding structural component of maglev train and track line were obtained through numerical simulation based on the proposed coupled model of vehicle-bridge magnetic force. Finally, the effectiveness of the proposed magnetic coupling model was verified through the field experiment of full-size maglev train preliminarily.

    参考文献
    [1] LEE H W, KIM K C, LEE J. Review of maglev train technologies [J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917.
    [2] KUSAGAWA S, BABA J, SHUTOH K, et al. Multipurpose design optimization of EMS-type magnetically levitated vehicle based on genetic algorithm [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1922.
    [3] ZHANG L, HUANG J, HUANG L, et al. Stability and bifurcation analysis in a maglev system with multiple delays[J]. International Journal of Bifurcation & Chaos, 2015, 25(5):1.
    [4] 周丹峰,李杰,余佩倡,等. 磁浮交通轨排耦合自激振动分析及自适应控制方法[J].自动化学报, 2019, 45(12): 2328.
    [5] WU H, ZENG X, YU Y. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system [J]. Acta Mechanica Sinica, 2017, 33(6): 1084.
    [6] CAI Y, CHEN S S, ROTE D M, et al. Vehicle/guideway interaction for high speed vehicles on a flexible guideway [J]. Journal of Sound and Vibration, 1994, 175(5): 625.
    [7] 周又和,武建军,郑晓静,等.磁浮列车的动力稳定性分析与Liapunov指数[J].力学学报,2000,32(1):42.
    [8] 翟婉明,赵春发.磁浮车辆/轨道系统动力学(Ⅰ): 磁/轨相互作用及稳定性[J].机械工程学报,2005,41(7):1.
    [9] 赵春发,翟婉明.磁浮车辆/轨道系统动力学(Ⅱ): 建模与仿真[J].机械工程学报,2005, 41(8):163.
    [10] YAU J D. Vibration control of maglev vehicles traveling over a flexible guideway [J]. Journal of Sound and Vibration, 2009, 321(1): 184.
    [11] HAN J B, HAN H S, LEE J M, et al. Dynamic modeling and simulation of EMS maglev vehicle to evaluate the levitation stability and operational safety over an elastic segmented switch track[J]. Journal of Mechanical Science & Technology, 2018, 32(7):2987.
    [12] HAN J B, KIM K J. Characteristics of vibration in magnetically levitated trains subjected to crosswind [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(5): 1347.
    [13] ZHANG M, LUO S, GAO C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797.
    [14] SUN Y, XU J, QIANG H, et al. Hopf bifurcation analysis ofmaglev vehicle-guideway interaction vibration system and stability control based on fuzzy adaptive theory[J]. Computers in Industry, 2019, 108: 197.
    [15] 刘德军,李小珍,洪沁烨,等.中低速磁浮列车?大跨度连续梁耦合振动研究[J].铁道工程学报,2017,34(9):53.
    [16] 向湘林,龙志强.基于虚拟样机的中速磁浮列车单悬浮架耦合振动特性研究[J].黑龙江大学工程学报,2020,11(4):61.
    [17] 刘恒坤,常文森.磁悬浮列车的双环控制[J].控制工程,2007,14(2):198.
    [18] 王素梅. 基于向量式有限元的风?车?轨?桥耦合系统动力分析[D]. 杭州: 浙江大学, 2018.
    [19] WANG S M, YAU J D, DUAN Y F, et al. Prediction of crosswind-induced derailment of train-rail-bridge system by vector mechanics [J]. Journal of Engineering Mechanics, 2020, 146 (12): 04020132.
    [20] 孙友刚,李万莉,林国斌,等.低速磁浮列车悬浮系统动力学建模及非线性控制[J].同济大学学报(自然科学版),2017,45(5):741.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙友刚,徐俊起,王素梅,袁野,倪一清.基于向量式有限元法的磁浮列车磁力耦合系统建模与数值分析[J].同济大学学报(自然科学版),2021,49(12):1635~1641

复制
分享
文章指标
  • 点击次数:400
  • 下载次数: 846
  • HTML阅读次数: 89
  • 引用次数: 0
历史
  • 收稿日期:2021-01-02
  • 在线发布日期: 2021-12-30
文章二维码