基于云理论的电磁悬浮系统控制回路性能评估
CSTR:
作者:
作者单位:

1.同济大学 国家磁浮交通工程技术研究中心,上海201804;2.同济大学 道路与交通工程教育部重点实验室,上海201804;3.同济大学 交通运输工程学院,上海201804

作者简介:

倪 菲(1985—),女,理学博士,主要研究方向为机电系统数据挖掘与鲁棒控制、电力交通融合系统分析与优化。E-mail: fei.ni@tongji.edu.cn

通讯作者:

徐俊起(1977—),男,高级工程师,工学博士,主要研究方向为磁浮列车悬浮控制技术及车‒轨耦合动力学。E-mail: xujunqi@tongji.edu.cn

中图分类号:

U237

基金项目:

国家自然科学基金面上项目(52072269);湖南创新型省份建设专项(2020GK2084);上海市多网多模式轨道交通协同创新中心基金


Performance Evaluation of Control Loop for Electromagnetic Levitation Systems Based on Cloud Theory
Author:
Affiliation:

1.National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China;2.Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University, Shanghai 201804, China;3.College of Transportation Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    将云理论引入电磁悬浮系统控制回路性能评估领域,并基于实测磁浮列车在调试阶段的运行数据进行数据驱动下的控制回路性能评估方法可行性测试。结果表明,基于云理论的评估指标能有效评价电磁悬浮系统控制回路性能。此外,基于多变量控制系统特征,将性能评估结果以云模型的方式进行了数据可视化。

    Abstract:

    In this paper, the framework of control loop performance evaluation based on the cloud theory is introduced to the electromagnetic levitation system. With the measured data of a commercial maglev train in commissioning phase, the feasibility of the proposed evaluation method is tested. In addition, by means of the multiple variable system, evaluation results of the control loop performance are visualized in an intuitive fashion.

    参考文献
    [1] MOHIEDDINE J. An overview of control performance assessment technology and industrial applications[J]. Control Engineering Practice,2006,14(5):441.
    [2] HARRIS T J. Assessment of control loop performance[J]. Canadian Journal of Chemical Engineering, 1989,67(5):856.
    [3] GRIMBLE M J. Controller performance benchmarking and tuning using generalised minimum variance control[J]. Automatica,2002,38(12):2111.
    [4] HARRIS T J, YU W. Variance decompositions of nonlinear dynamic stochastic systems[J]. Journal of Process Control, 2010, 20(2):195.
    [5] 薛美盛,张毅,王川,等.控制回路性能评估综述[J].控制工程,2009,16(5):507.
    [6] GERRY J P. Prioritizing and optimizing problem loops using a loop monitoring system[J]. Technical Papers of ISA,2002,422:145.
    [7] YU J, QIN S J. Statistical MIMO controller performance monitoring, Part I: data-driven covariance benchmark[J]. Journal of Process Control,2008,18:277.
    [8] 李晨.控制回路的性能监控、诊断与改善[D].上海:华东理工大学,2015.
    [9] WU P. Performance monitoring of MIMO control system using Kullback-Leibler divergence[J]. Canadian Journal of Chemical Engineering, 2018, 96(7):1559.
    [10] 张光明,李柠,李少远.一种数据驱动的预测控制器性能监控方法[J].上海交通大学学报,2011,45(8):1113.
    [11] XU Y T, ZHANG G M, LI N, et al. Data-driven performance monitoring for model predictive control using a Mahalanobis distance based overall index[J]. Asian Journal of Control, 2019,21(2):891.
    [12] LI D, CHEUNG D, SHI X M, et al. Uncertainty reasoning based on cloud models in controllers[J]. Computers & Mathematics with Applications, 1998,35(3):99.
    [13] 李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28.
    [14] 付斌,李道国,王慕快. 云模型研究的回顾与展望[J]. 计算机应用研究, 2011,28(2):420.
    [15] 侯金芬. 基于云理论的控制系统监测与诊断方法的研究[D]. 沈阳:东北大学, 2014.
    [16] CHEN C, XU J Q, JI W, et al. Adaptive levitation control for characteristic model of low speed maglev vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2020,234(7):1456.
    [17] SUN Y G, XU J Q, QIANG H Y, et al. Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method[J]. Measurement, 2019,141:217.
    [18] CHEN C, XU J Q, LIN G B, et al. Fuzzy adaptive control particle swarm optimization based on T-S fuzzy model of maglev vehicle suspension system[J]. Journal of Mechanical Science and Technology, 2020,34(1):43.
    [19] WANG Z Q, LONG Z Q, LI X L. Track irregularity disturbance rejection for maglev train based on online optimization of PnP control architecture[J]. IEEE Access,2019(7):12610.
    [20] 陈琛,徐俊起,荣立军,等.轨道随机不平顺下磁浮车辆非线性动力学特性[J].交通运输工程学报,2019,19(4):115.
    [21] 周又和,武建军,郑晓静,等.磁浮列车的动力稳定性分析与Liapunov指数[J].力学学报,2000,32(1):42.
    [22] 洪华杰,李杰,张锰.磁浮车轨耦合系统稳定性分析[J].控制理论与应用,2006,23(3):421.
    [23] 黎松奇,张昆仑,陈殷,等.弹性轨道上磁浮车辆动力稳定性判断方法[J].交通运输工程学报,2015,15(1):43.
    [24] 宋荣荣.磁浮控制系统的分析、优化设计和模糊综合评价方法[D].成都:西南交通大学,2015.
    [25] SUN Y G, QIANG H Y, XU J Q. Internet of things-based online condition monitor and improved adaptive fuzzy control for a medium-low-speed maglev train system[J]. IEEE Transactions on Industrial Informatics, 2020,16(4):2629.
    [26] YU P C, LI J, ZHOU D F, et al. A performance assessment method for suspension control system of maglev train[C]//2016 Chinese Control and Decision Conference (CCDC). Yinchuan: [s.n.], 2016:3509-3514.
    [27] SONG Y, NI F, LIN G, et al. Data-driven control loop performance evaluation of electromagnetic levitation systems[C]//2020 Chinese Automation Congress (CAC). Shanghai:[s.n.], 2020:502-507.
    [28] 平冈和幸, 堀玄. 程序员的数学2:概率统计[M].北京:人民邮电出版社, 2015.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

倪菲,王凡鑫,徐俊起,荣立军,宋一锋.基于云理论的电磁悬浮系统控制回路性能评估[J].同济大学学报(自然科学版),2021,49(12):1660~1670

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-21
  • 在线发布日期: 2021-12-30
文章二维码