下击暴流作用下大跨度平屋盖结构的风荷载分布特性
CSTR:
作者:
作者单位:

1.华南理工大学 亚热带建筑科学国家重点实验室,广东 广州 510640;2.广东保利城市发展有限公司,广东 广州 510180

作者简介:

谢壮宁(1963—),男,教授,工学博士,主要研究方向为结构风工程。E-mail: znxie@scut.edu.cn

中图分类号:

TU312.1

基金项目:

国家自然科学基金(51778243);广东省现代土木工程技术重点实验室资助项目(2021B1212040003)


Wind Load Distribution Characteristics of Long-span Flat Roof Structure Under Downburst
Author:
Affiliation:

1.State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China;2.Guangdong Poly Urban Development Co., Ltd., Guangzhou 510180, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    应用一种下击暴流发生装置,在大气边界层风洞内模拟了适用于大跨度屋盖风洞试验的1∶300比例下击暴流风场。在此基础上,对下击暴流作用下大跨度平屋盖结构的风压分布特征进行了风洞试验,并与常规B类地貌的相应试验结果进行对比。结果表明:在模型区内,下击暴流发生的相对位置对风压系数的影响整体较小;下击暴流作用下平均风压分布与B类风场下的结果基本一致,但极小风压系数绝对值最大值9.85比B类风场的5.54超出77.8%,并且相应脉动风压的功率谱显著高于B类风场的试验结果;B类风场下平屋面的极大风压系数最大值均接近或小于0,但不同风向角的下击暴流风作用下高于0.15的极大风压系数所占的屋盖面积比例处于51%到75%的范围之间,极大风压系数局部最高可达0.35,大范围的较高正压会进一步影响结构的承载力。

    Abstract:

    Based on an experimental apparatus for downburst simulation, a 1∶300 downburst wind field suitable for the wind pressure distribution test of a long-span flat roof structure was simulated in the atmospheric boundary layer wind tunnel. On this basis, the wind pressure distribution characteristics of the long-span flat roof structure under downburst were studied, and were compared with the corresponding test results in exposure category B. The results show that in the model area, the relative position of downburst has little effect on the wind pressure coefficients; the average wind pressure distribution under downburst is basically the same as that in exposure category B, but the maximum absolute value of minimum wind pressure coefficient reaches 9.85, and is 77.8% higher than 5.54 in exposure category B; the corresponding power spectrum of fluctuating wind pressure is significantly higher than that in exposure category B; the maximum wind pressure coefficients of flat roof in exposure category B are close to or less than 0. However, in different wind directions under downburst, the ratios of the roof area with the maximum wind pressure coefficients over 0.15 are between 51% and 75%, and the local maximum wind pressure coefficient reaches 0.35; the high positive pressure in a large area will further affect the bearing capacity of the structure.

    参考文献
    [1] FUJITA T T, BYERS H R. Spearhead echo and downburst in the crash of an airliner[J]. Monthly Weather Review, 1977, 105(2): 129.
    [2] 郑永光, 田付友, 周康辉, 等. 雷暴大风与龙卷的预报预警和灾害现场调查[J]. 气象科技进展, 2018,8(2): 55.
    [3] HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27(8): 900.
    [4] OSEGUERA R M, BOWLES R L. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow[R]. Hampton: Langley Research Center of National Aeronautics and Space Administration, 1988.
    [5] VICROY D D. Assessment of microburst models for downdraft estimation[J]. Journal of Aircraft, 1992, 29(6): 1043.
    [6] WOOD G S, KWOK K C S, MOTTERAM N A, et al. Physical and numerical modeling of thunderstorm downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(6): 535.
    [7] ZHANG S, YANG Q S, SOLARI G, et al. Characteristics of thunderstorm outflows in Beijing urban area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104011.
    [8] HOLMES J D. Physical modelling of thunderstorm downdrafts by wind-tunnel jet[C]//AWES Second Workshop on Wind Engineering. Melbourne: [s.n.], 1992: 29-32.
    [9] LETCHFORD C W, MANS C. Translation effects in modeling thunderstorm downbursts[C]//4th International Colloquium on Bluff Body Aerodynamics and Applications. Bochum: [s.n.], 2000: 175-178.
    [10] CHAY M T, LETCHFORD C W. Pressure distributions on a cube in a simulated thunderstorm downburst, Part A: stationary downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 711.
    [11] 陈勇, 柳国光, 徐挺, 等. 运动雷暴冲击风水平风速时程分析及现象模型[J]. 同济大学学报(自然科学版), 2012, 40(1): 22.
    [12] 段旻, 谢壮宁, 石碧青. 下击暴流风场的大气边界层风洞模拟研究[J]. 建筑结构学报, 2012, 33(3): 126.
    [13] 刘慕广, 石碧青, 余先锋,等. 一种用于模拟雷暴冲击风的风洞试验装置: 中国, CN201720321201.0[P]. 2017-12-01.
    [14] FENG S, WANG Y K, XIE Z N. Estimating extreme wind pressure for long-span roofs: sample independence considerations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205:104341.
    [15] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009―2012[S]. 北京:中国建筑工业出版社, 2012.
    相似文献
    引证文献
引用本文

谢壮宁,林韬略,成文滔.下击暴流作用下大跨度平屋盖结构的风荷载分布特性[J].同济大学学报(自然科学版),2021,49(12):1746~1753

复制
分享
文章指标
  • 点击次数:225
  • 下载次数: 674
  • HTML阅读次数: 50
  • 引用次数: 0
历史
  • 收稿日期:2021-03-21
  • 在线发布日期: 2021-12-30
文章二维码