基于中国气象风速数据的汽车风平均阻力系数
CSTR:
作者:
作者单位:

1.天津大学 电气自动化与信息工程学院, 天津 300072;2.中汽研(天津)汽车工程研究院有限公司, 天津 300300

作者简介:

袁海东(1990—),男,工程师,工学博士,主要研究方向为汽车空气动力学。E-mail: yuanhaidong@catarc.ac.cn

通讯作者:

刘学龙(1983—),男,高级工程师,硕士研究生,主要研究方向为汽车空气动力学。E-mail: liuxuelong@catarc.ac.cn

中图分类号:

U461.1

基金项目:

中国汽车技术研究中心指南类课题(21243417)


Wind Averaged Drag Coefficient of Automobile Based on China Weather Air Speed
Author:
Affiliation:

1.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;2.CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin 300300, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    空气动力学阻力是汽车行驶阻力的重要组成部分,也是汽车能耗的重要来源。汽车在真实道路环境中行驶受到道路自然风的影响,为了准确计算和评价汽车在真实道路环境中行驶的气动阻力特性以及能源消耗,提出了循环工况风平均阻力系数计算方法。首先,通过分析气象数据获取近地区域自然风的分布特征,进而分析不同地形条件下汽车的偏航角概率分布特征,通过数值计算的方法分析汽车气动阻力系数随车速和偏航角的变化规律,并基于偏航角的概率分布特征计算获得了给定车速的风平均阻力系数,最后,提出循环工况风平均阻力系数的计算方法,并分析了不同地形条件和速度区间对汽车气动阻力的贡献量。结果表明,对于本文研究的车型,循环工况风平均阻力系数高于零偏航工况的阻力系数9.2%和7.3%,城市工况对气动阻力系数的贡献量小于5%,40 km/h及以上车速区间均对气动阻力系数有较大的贡献量。

    Abstract:

    The aerodynamic resistance of automobile is an important part of driving resistance and an important source of automobile energy consumption. Automobiles are driving in a real road environment affected by the natural wind on the road. In order to accurately calculate and evaluate the aerodynamic drag characteristic and energy consumption of an automobile driving in a real road environment, a calculation method for the wind averaged aerodynamic drag coefficient based on cycle conditions was proposed. First, the distribution characteristic of natural wind near the ground was obtained by analyzing meteorological data. Then, the probability distribution characteristic of the yaw angle of the automobile under different terrain conditions was analyzed. The changes of the aerodynamic drag coefficient of the automobile with the speed and yaw angle were analyzed by numerical calculation. The wind averaged drag coefficient of a given automobile speed was calculated based on the probability distribution characteristic of the yaw angle. Finally, the calculation method of the wind averaged drag coefficient based on cycle conditions was proposed, and the contribution of different terrain conditions and speed ranges on the aerodynamic drag of the vehicle was analyzed. The results show that for the models studied in this paper, the wind averaged drag coefficient based on cycle conditions is higher than that of the zero-yaw condition by 9.2% and 7.3%, and the contribution of urban condition to aerodynamic drag coefficient is less than 5%. The speed range of 40 km/h and above all has a greater contribution to aerodynamic drag coefficient.

    参考文献
    [1] 国家市场监督管理委总局. 乘用车燃油消耗量限值: GB 19578—2021[S]. 北京:中国标准出版社,2021.State Administration for Market Regulation. Fuel consumption limits for passenger cars: GB 19578—2021[S]. Beijing: Standards Press of China, 2021.
    [2] 环境保护部. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB 18352.6—2016[S]. 北京:中国标准出版社,2016.Ministry of the Environmental Protection. Limits and measurement methods for emissions from light-duty vehicles (China 6): GB 18352.6—2016[S]. Beijing: Standards Press of China, 2016.
    [3] D'HOOGE A, REBBECK L, PALIN R, et al. Application of real-world wind conditions for assessing aerodynamic drag for on-road range prediction[J]. SAE Technical Papers, 2015. DOI: https://doi.org/10.4271/2015-01-1551.
    [4] OETTLE N, SIMS-WILLIAMS D, DOINY R, et al. The effects of unsteady on-road flow conditions on cabin noise[J]. SAE Technical Papers, 2010. DOI: https://doi.org/10.4271/2010-01-0289.
    [5] OETTLE N R, DAVID S W, ROBERT D, et al. The effects of unsteady on-road flow conditions on cabin noise: spectral and geometric dependence[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2011, 4(1):120. https://doi.org/10.4271/2011-01-0159.
    [6] NICHOLAS O, OLIVER M, DAVID S W, et al. Evaluation of the aerodynamic and aeroacoustic response of a vehicle to transient flow conditions[J]. SAE International Journal of Passenger Cars- Mechanical Systems, 2013, 6(1):389. DOI: https://doi.org/10.4271/2013-01-1250.
    [7] OETTLE N R, SIMS-WILLIAMS D B, DOMINY, R G. Assessing the aeroacoustic response of a vehicle to transient flow conditions from the perspective of a vehicle occupant[J]. SAE International Journal of Passenger Cars Mechanical systems, 2014, 7(2): 550. https://doi.org/10.4271/2014-01-0591.
    [8] FULLER J B, PASSMORE M. Unsteady aerodynamics of an oscillating fastback model[J]. SAE International Journal of Passenger Cars- Mechanical Systems, 2013, 6(1): 403. DOI: https://doi.org/10.4271/2013-01-1253.
    [9] NICHOLAS O, OLIVER M, DAVID S W, et al. Evaluation of the aerodynamic and aeroacoustic response of a vehicle to transient flow conditions[J]. SAE International Journal of Passenger Cars- Mechanical Systems, 2013, 6(1): 389. DOI: https://doi.org/10.4271/2013-01-1250.
    [10] OETTLE N, MANKOWSKI O, DAVID S W, et al. Assessment of a vehicle's transient aerodynamic response[C]// SAE 2012 World Congress & Exhibition. 2012. DOI: https://doi.org/10.4271/2012-01-0449.
    [11] PASCAL T, KIRSTIN H, RAINER D, et al. Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions - Part 1[J]. SAE Technical Papers, 2011.
    [12] PASCAL T, KIRSTIN H, RAINER D, et al. Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions Part 2[J]. SAE Technical Papers, 2011.
    [13] GUILMINEAU E, CHOMETON F. Numerical and experimental analysis of unsteady separated flow behind an oscillating car model[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2015, 1(1): 646. DOI: https://doi.org/10.4271/2008-01-0738.
    [14] PASSMORE M A, MANSOR S. The measurement of transient aerodynamics using an oscillating model facility[J]. SAE international, 2006. DOI: https://doi.org/10.4271/2006-01-0338.
    [15] LIN C, SAUNDERS J W, WATKINS S. Effect of cross-winds on motor car engine cooling[J]. SAE Technical Papers, 1997. DOI: https://doi.org/10.4271/970138.
    [16] RYAN A M, TIMONEY D J. Measured and predicted effects of air flow non-uniformity on thermal performance of an r-134a evaporator[J]. SAE Technical Papers, 1997. DOI: https://doi.org/10.4271/970831.
    [17] GAYLARD A, NICHOLAS O, JOAQUIN, et al. Evaluation of non-uniform upstream flow effects on vehicle aerodynamics[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2014, 7(2): 692. DOI: https://doi.org/10.4271/2014-01-0614.
    [18] WATKINS S, COOPER K. The unsteady wind environment of road vehicles, part two: effects on vehicle development and simulation of turbulence[J]. SAE Technical Papers, 2007. https://doi.org/10.4271/2007-01-1237.
    [19] COOPER K R. Truck aerodynamics reborn - lessons from the past[C]// International Truck & Bus Meeting & Exhibition. SAE Technical Papers, 2003. https://doi.org/10.4271/2003-01-3376.
    [20] LEUSCHEN J, COOPER K R. Full-scale wind tunnel tests of production and prototype, second-generation aerodynamic drag-reducing devices for tractor-trailers[C]// SAE International SAE 2006 Commercial Vehicle Engineering Congress & Exhibition. SAE Technical Paper Series, 2006. DOI: 10.4271/2006-01-3456.
    [21] COOPER K R, WATKINS S. The unsteady wind environment of road vehicles, Part one: a review of the on-road turbulent wind environment[J]. SAE Technical Papers, 2007. DOI: 10.4271/2007-01-1236.
    [22] DANIEL S, CHRISTOPH S, FELIX W, et al. Investigation of aerodynamic drag in turbulent flow conditions[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2016. DOI: https://doi.org/10.4271/2016-01-1605.
    [23] LUCA D, BRADLEY D, CHINWEI C, et al. Accurate fuel economy prediction via a realistic wind averaged drag coefficient[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2017, 10(1): 265. DOI: https://doi.org/10.4271/2017-01-1535.
    [24] JEFF H, DAVID F, MARTIN P, et al. The effect of a sheared crosswind flow on car aerodynamics[J]. SAE International Journal of Passenger Cars Mechanical Systems, 2017, 10(1): 278. DOI: https://doi.org/10.4271/2017-01-1536.
    [25] WINDSOR S. Real world drag coefficient – is it wind averaged drag?[C]// The International Vehicle Aerodynamics Conference. Cambridge: Woodhead Publishing, 2014: 3. https://doi.org/10.1533/9780081002452.1.3.
    [26] 国家市场监督管理委总局. 中国汽车行驶工况 第1部分:轻型汽车: GB∕T 38146.1—2019[S]. 北京:中国标准出版社, 2019.State Administration for Market Regulation. China automotive test cycle Part 1: Light-duty vehicles: GB∕T 38146.1—2019[S]. Beijing: Standards Press of China, 2019.
    [27] HOWELL J, FORBES D, PASSMORE M. A drag coefficient for application to the WLTP driving cycle[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2017, 231(9): 1274. DOI: https://doi.org/10.1177/0954407017704784.
    [28] HOWELL J, PASSMORE M, WINDSOR S. A drag coefficient for test cycle application[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2018, 11(5): 447. DOI: https://doi.org/10.4271/2018-01-0742.
    [29] TODDY L, JOHN T, GREGORY F. Sensitivity analysis of aerodynamic drag coefficient to EPA coastdown ambient condition variation[J]. SAE Technical Papers, 2020. DOI: https://doi.org/10.4271/2020-01-0666.
    [30] FADLER G, LOUNSBERRY T, TRIPP J. Sensitivity analysis of coastdown test wind averaged drag coefficient for several functions of drag coefficient vs. speed[C]// WCX SAE World Congress Experience. 2020. DOI:10.4271/2020-01-0663.
    [31] 国家气象科学数据中心. 中国地面气候资料日值数据集(V3.0)[DB/OL]. [2021-08-10]. http://data.cma.cn.China Meteorological Data Service Center. China Ground Climate Daily Data Set (V3.0) [DB/OL]. [2021-08-10]. http://data.cma.cn.
    [32] Department of Mechanical Engineering, TUM. DrivAer model[EB/OL]. [2021-11-11]. https://www.mw.tum.de/en/aer/research-groups/automotive/drivaer/.
    [33] HEFT A I, INDINGER T, ADAMS N A. Introduction of a new realistic generic car model for aerodynamic investigations[J]. SAE World Congress, 2012. DOI: https://doi.org/10.4271/2012-01-0168.
    [34] ASHTON N, REVELL A. Comparison of RANS and DES methods for the DrivAer automotive body[J]. SAE World Congress, 2015. DOI: https://doi.org/10.4271/2015-01-1538.
    [35] FRüH W G. From local wind energy resource to national wind power production[J]. AIMS Energy, 2015, 3(1): 101. DOI: 10.3934/energy.2015.1.101.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁海东,王海洋,庞彦伟,刘学龙.基于中国气象风速数据的汽车风平均阻力系数[J].同济大学学报(自然科学版),2021,49(S1):28~38

复制
分享
文章指标
  • 点击次数:140
  • 下载次数: 1187
  • HTML阅读次数: 33
  • 引用次数: 0
历史
  • 收稿日期:2021-08-20
  • 在线发布日期: 2023-02-28
文章二维码