基于定常射流的有车轮方背Ahmed模型主动气动减阻
CSTR:
作者:
作者单位:

1.同济大学 汽车学院, 上海 201804;2.同济大学 上海地面交通工具风洞中心, 上海 201804;3.北京民用飞机技术研究中心, 北京 102211;4.同济大学南昌汽车创新研究院, 南昌 330052

作者简介:

杨志刚(1961—),男,博士生导师,工学博士,主要研究方向为车辆空气动力学。E-mail: zhigangyang@tongji.edu.cn

通讯作者:

夏超(1988—),男,硕士生导师,工学博士,主要研究方向为车辆空气动力学。E-mail: chao.xia@tongji.edu.cn

中图分类号:

U461.1;O355

基金项目:

上海市重点实验室项目(18DZ2273300); 同济大学南昌汽车创新研究院前瞻课题(QZKT2020-12)


Active Drag Reduction of a Square-Back Ahmed Body with Wheels Based on Steady Blowing
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai, 201804, China;2.Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai, 201804, China;3.Beijing Aeronautical Science and Technology Research Institute, Beijing 102211, China;4.Nanchang Automotive Institute of Intelligence and New Energy, Nanchang, 330052, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    近年来,主动流动控制技术已用于汽车气动减阻研究,但较多针对无车轮的简化汽车模型开展且减阻量和净节率均有待提高。本研究针对原始及带有静止、旋转车轮的方背Ahmed汽车模型,采用数值模拟方法,在模型背部施加定常射流进行主动气动减阻规律的研究。首先,分析无射流工况下车轮对方背Ahmed汽车模型气动特性的影响;其次,重点探究有车轮工况下,射流槽布置形式、射流角度、动量系数等因素对气动阻力的影响规律。获得背部射流的最佳工况为:采用连续且距边缘较近的射流槽,射流角度45°,动量系数3%,减阻量可达9.5%,对应净节率为12.7 W。

    Abstract:

    In recent years, active flow control has been applied to study the drag reduction of vehicles. However, most researches only aim at some simplified vehicle models without wheels. In addition, the amount of drag reduction and net saved energy both still need to be further improved. In this paper, based on steady blowing on the base, the active drag reduction is numerically studied on three square-back Ahmed models, i.e.,the original Ahmed model,the Ahmed model with stationary wheels, and the Ahmed model with rotating wheels, respectively. First, this paper explores in detail the effect of wheels on aerodynamic characteristics without jet flow. Then, it focuses on the influence of the form of jet groove, jet angle, and momentum coefficient on the drag under wheel conditions. It is concluded that the optimum conditions are as follows: when the form of jet groove is continuous and is close to the edge of the rear of model, the jet angle is 45° and the momentum coefficient is 3%, the corresponding drag reduction and net saved energy can reach 9.5% and 12.7W, respectively.

    参考文献
    [1] 李文火. 沟槽型非光滑车表汽车气动减阻特性研究[D].杭州: 浙江大学, 2014.LI Wenhuo. Study of aerodynamic drag reduction feature on automobile with non-smooth groove surface[D]. Hangzhou: Zhejiang University, 2014.
    [2] HAECHEON C, JUNGIL L, HYUNGMIN P. Aerodynamics of heavy vehicles[J]. Annual Review of Fluid Mechanics, 2014,46: 441. DOI: 10.1146/annurev-fluid-011212-140616.
    [3] VOLPE R, DEVINANT P, KOURTA A. Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: Flow bi-stability and spectral analysis[J]. Experiments in Fluids, 2015, 56(5): 1. DOI: 10.1007/s00348-015-1972-0.
    [4] AHMED S R, RAMM G, FALTIN G. Some salient features of the time-averaged ground vehicle wake[J]. SAE Technical Paper 840300, 1984, https://doi.org/10.4271/840300.
    [5] MINGUEZ M, PASQUETTI R, SERRE E. High-order large-eddy simulation of flow over the “Ahmed body” car model[J]. Physics of Fluids, 2008, 20(9):123. DOI: 10.1063/1.2952595.
    [6] KHALIGHI B, KUO-HUEY C, IACCARINO G. Unsteady aerodynamic flow investigation around a simplified square-back road vehicle with drag reduction devices[J]. Journal of Fluids Engineering, 2012, 134(6). DOI: 10.1115/1.4006643.
    [7] KHALIGHI B, BALKANYI S R, BERNAL L P. Experimental investigation of aerodynamic flow over a bluff body in ground proximity with drag reduction devices[J]. Int J of Aerodynamics,2013,3(4): 217. DOI: 10.1504/IJAD.2013.054421.
    [8] 杨志刚,范亚军,夏超,等.基于双稳态尾迹的方背Ahmed模型减阻[J].吉林大学学报(工学版), 2020, 50(5): 1635.YANG Zhigang, FAN Yajun, XIA Chao, et al. Drag reduction of a square-back Ahmed model based on bi-stable wake[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1635. DOI: 10.13229/j.cnki.jdxbgxb20190401.
    [9] ROUMEAS M, GILLIERON P, KOURTA A. Analysis and control of the near-wake flow over a square-back geometry[J]. Computers and Fluids, 2009, 38(1): 60. DOI: 10.1016/j.compfluid.2008.01.009.
    [10] BARROS D, BOREE J, NOACK B R, et al. Bluff body drag manipulation using pulsed jets and Coanda effect[J]. Journal of Fluid Mechanics, 2016, 805: 422. DOI: 10.1017/jfm.2016.508.
    [11] SCHMIDT H J, WOSZIDLO R, NAYERI C N, et al. Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators[J]. Experiments in Fluids, 2015, 56(7). DOI: 10.1007/s00348-015-2018-3.
    [12] WANG Y F, SICOT C, Borée J, et al. Experimental study of wheel-vehicle aerodynamic interactions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198: 104062. DOI: 10.1016/j.jweia.2019.104062.
    [13] ZHANG B F, LIU K, ZHOU Y, et al. Active drag reduction of a high-drag Ahmed body based on steady blowing[J]. Journal of Fluid Mechanics,2018,856:351. DOI: 10.1017/jfm.2018.703.
    [14] SHIH T H, LIOU W W, SHABBIR A, et al. A new k -? eddy viscosity model for high Reynolds number turbulent flows[J]. Computers and Fluids,1995,24(3):227. DOI: 10.1016/0045-7930(94)00032-T.
    [15] 周华,杨志刚,朱晖.基于整车风洞试验的MIRA车型数值计算[J].吉林大学学报(工学版),2019,49(4):1043. DOI:10.13229/j.cnki.jdxbgxb20180226.ZHOU Hua, YANG Zhigang, ZHU Hui. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University (Engineering and Technology Edition), 2019,49(4):1043. DOI:10.13229/j.cnki.jdxbgxb20180226.
    [16] GRANDEMANGE M, GOHLKE M, CADOT O. Turbulent wake past a three-dimensional blunt body Part 1: Global modes and bi-stability[J]. Journal of Fluid Mechanics, 2013, 722: 51. DOI: 10.1017/jfm.2013.83.
    相似文献
    引证文献
引用本文

杨志刚,任静,夏超,李元枢.基于定常射流的有车轮方背Ahmed模型主动气动减阻[J].同济大学学报(自然科学版),2021,49(S1):39~47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-10
  • 在线发布日期: 2023-02-28
文章二维码