基于车道居中控制的驾驶员切弯行为偏好视觉影响机制
CSTR:
作者:
作者单位:

同济大学 汽车学院, 上海 201804

作者简介:

夏韬锴(1996—),男,博士生,主要研究方向为自动驾驶人机交互与运动规划。E-mail: xiataokai@tongji.edu.cn

通讯作者:

陈 慧(1964—),男,教授,博士生导师,工学博士,主要研究方向为汽车底盘电子控制系统技术及智能汽车技术。 E-mail:hui-chen@tongji. edu. cn

中图分类号:

U471.3


Visual Mechanism Behind Drivers’ Preference on Curve-cutting Behavior of Lane Centering Control during Curve Negotiation
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    驾驶模拟器的采集车道居中控制系统(LCCS)开启时,根据高速公路匝道弯道上的驾驶员注视点视角与关键路点视角信息,建立模型分析视觉特征与该工况下驾驶员对路径切弯行为偏好的关系。首先,提出基于临近路点的驾驶员注视行为分析方法;其次,分析不同弯道区间段上关键路点与驾驶员注视视点之间的位置关系,以及利用其预测偏好的可行性;最后,基于视觉特征设计了72个统计指标,筛选后选择其中8个指标建立切弯行为偏好估计逻辑回归模型。结果表明:该模型能够准确估计驾驶员对两条路径在弯道中心区域切弯程度的相对偏好;模型中的参数反映了切弯行为偏好背后的视觉影响机制,这为弯道居中控制时的驾驶员偏好获取及其自适应方法提供了依据与支撑。

    Abstract:

    The visual angles of drivers' gaze points and critical waypoints on an expressway ramp in the driving simulator when the lane centering control system (LCCS) is on were gathered. A model was built to analyze the relationship between visual characteristics and drivers’ preference on the curve-cutting behavior of paths. First, methods to analyze driver gaze behavior by nearing critical waypoints were proposed. Next, the relationship between positions of critical waypoints and driver gaze points on different curve segments was analyzed, and the reason for this relationship was used to predict driver preference was also demonstrated. Finally, 72 statistic indices were designed based on visual characteristics. A logistic regression model of drivers’ preference on curve cutting behavior with selected 8 indices was built. The results show that the estimation model predicts drivers’ relative preference on curve cutting behavior of two paths on the center area of the curve road with a high prediction accuracy. Coefficients in the model reveal the visual mechanism behind curve-cutting behavior preference, which provides the basis for the design of preference estimation methods and lane-centering control systems adaptive to driver preference.

    参考文献
    [1] UTRIAINEN R, POLLANEN M, LIIMATAINEN H. The safety potential of lane keeping assistance and possible actions to improve the potential[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 556. DOI:10.1109/TIV.2020.2991962.
    [2] VAN DER LAAN J D , HEINO A, DE WAARD D. A simple procedure for the assessment of acceptance of advanced transport telematics[J]. Transportation Research Part C: Emerging Technologies, 1997, 5(1): 1. DOI:10.1016/S0968-090X(96)00025-3.
    [3] BRAITMAN K A, MCCARTT A T, ZUBY D S, et al. Volvo and infiniti drivers’ experiences with select crash avoidance technologies[J]. Traffic Injury Prevention, 2010, 11(3): 270. DOI:10.1080/15389581003735600.
    [4] SPACEK P. Track behavior in curve areas: attempt at typology[J]. Journal of Transportation Engineering, 2005, 131(9): 669. DOI: 10.1061/(ASCE)0733-947X(2005)131:9(669).
    [5] BARENDSWAARD S, POOL D M, BOER E R, et al. A classification method for driver trajectories during curve-negotiation[C/OL]//2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy: IEEE, 2019. [2021–08–29]. https://ieeexplore.ieee.org/document/8914301/. DOI:10.1109/SMC.2019.8914301.
    [6] WEI C, ROMANO R, MERAT N, et al. Risk-based autonomous vehicle motion control with considering human driver's behaviour[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 1. DOI:10.1016/j.trc.2019.08.003.
    [7] YANG B, SONG X, GAO Z, et al. Trajectory planning for vehicle collision avoidance imitating driver behavior[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2021: 095440702110304. DOI:10.1177/09544070211030422.
    [8] BASU C, YANG Q, HUNGERMAN D, et al. Do you want your autonomous car to drive like you?[C/OL]//Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. Vienna Austria: ACM, 2017. [2021–08–29]. https://dl.acm.org/doi/10.1145/2909824.3020250. DOI:10.1145/2909824.3020250.
    [9] 赵斌, 陈慧, 冉巍, 等. 车道对中控制系统的驾驶员自适应需求验证[J]. 汽车技术, 2021(3): 1.ZHAO B, CHEN H, RAN W, et al. Verification of Adaptive Demand of Lane Centering Control System[J]. Automobile Technology, 2021(3): 1.
    [10] LAN X, CHEN H, HE X, et al. Driver lane keeping characteristic indices for personalized lane keeping assistance system[C/OL]. [2021–08–29]. https://www.sae.org/content/2017-01-1982/. DOI:10.4271/2017-01-1982.
    [11] LAPPI O, MOLE C. Visuomotor control, eye movements, and steering: a unified approach for incorporating feedback, feedforward, and internal models[J]. Psychological Bulletin, 2018, 144(10): 981. DOI:10.1037/bul0000150.
    [12] VAN DER EL K, POOL D M, MULDER M. Measuring and modeling driver steering behavior: from compensatory tracking to curve driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 61: 337. DOI:10.1016/j.trf.2017.09.011.
    [13] LEHTONEN E, LAPPI O, KOIRIKIVI I, et al. Effect of driving experience on anticipatory look-ahead fixations in real curve driving[J]. Accid Anal Prev, 2014, 70: 195. DOI:10.1016/j.aap.2014.04.002.
    [14] WANG Z, ZHENG R, KAIZUKA T, et al. Relationship between gaze behavior and steering performance for driver–automation shared control: a driving simulator study[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(1): 154. DOI:10.1109/TIV.2018.2886654.
    [15] LAPPI O. Future path and tangent point models in the visual control of locomotion in curve driving[J]. Journal of Vision, 2014, 14(12): 21. DOI:10.1167/14.12.21.
    [16] SALVUCCI D D, GOLDBERG J H. Identifying fixations and saccades in eye-tracking protocols[C]//Proceedings of the symposium on Eye tracking research & applications?ETRA'00. Florida: ACM Press, 2000. [2021–03–22]. DOI:10.1145/355017.355028.
    [17] CALVI A. A study on driving performance along horizontal curves of rural roads[J]. Journal of Transportation Safety & Security, 2015, 7(3): 243. DOI:10.1080/19439962.2014.952468.
    [18] MOLE C, PEKKANEN J, SHEPPARD W E A, et al. Drivers use active gaze to monitor waypoints during automated driving[J]. Scientific Reports, 2021, 11(1): 263. DOI:10.1038/s41598-020-80126-2.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏韬锴,陈慧,杨佳鑫,冉巍.基于车道居中控制的驾驶员切弯行为偏好视觉影响机制[J].同济大学学报(自然科学版),2021,49(S1):162~168

复制
分享
文章指标
  • 点击次数:166
  • 下载次数: 462
  • HTML阅读次数: 74
  • 引用次数: 0
历史
  • 收稿日期:2021-08-31
  • 在线发布日期: 2023-02-28
文章二维码