基于Vissim的共享电动汽车交通流出行仿真
作者:
作者单位:

1.溧阳中等专业学校,常州 213300;2.同济大学 汽车学院,上海 201804

作者简介:

袁洁(1998—),男,讲师,主要研究方向为共享汽车交通控制。E-mail: 245340251@qq.com

通讯作者:

中图分类号:

U121

基金项目:


Traffic Flow Simulation of Shared Electric Vehicles Based on Vissim
Author:
Affiliation:

1.Liyang Secondary Vocational School, Changzhou 213300, Jiangsu, China;2.School of Automotive Studies, Tongji University, Shanghai 201804, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    共享电动汽车作为公共交通手段的新兴选择及其所具有的广阔前景与市场,研究其出行数据和出行规律具有重要意义。针对具有代表性的特定路段(特大城市郊区主道路口),采集共享电动汽车实际出行数据,设计了一种基于实际场景筛选提取有效数据的方法,并通过对有效数据的研究揭示了共享电动汽车相关的出行特征情况。在此基础上,实地摄录采集并统计了基本交通数据,针对早晚高峰和其他时间搭建了路口的仿真模型,设计了预测路口和路段共享电动汽车的最大出行量的方法,完成了仿真预测实验,在一定程度上验证了共享电动汽车出行特征的分析结果。研究结果对分时租赁公司相关运营策略具有指导意义,并可为用户出行时间及路线提供选择。

    Abstract:

    As a new choice of transportation, shared electric vehicles have a broad prospect and market. It is of great significance to study their traveling data and understand their traveling laws. In this paper, a method was designed to extract the effective data based on the actual scene, which was used to collect the real trip data of shared electric vehicles and to reveal the traveling characteristics of shared electric vehicles. The basic traffic data were collected and counted, the simulation models of intersections were built for morning and evening rush hours and other times, and the method to predict the maximum traffic volume of shared electric vehicles at intersections and road sections was designed. The simulation and prediction experiment was conducted, which validated the analysis result of the traveling characteristics of the shared electric vehicles to a certain extent. The research results have a guiding significance for relevant operation strategies of time-sharing leasing companies, and can provide users with the choice of traveling time and route.

    参考文献
    相似文献
    引证文献
引用本文

袁洁,崔博宽.基于Vissim的共享电动汽车交通流出行仿真[J].同济大学学报(自然科学版),2021,49(S1):194~201

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-28
  • 出版日期:
文章二维码