进口温湿度对质子交换膜燃料电池输出性能的影响
CSTR:
作者:
作者单位:

1.同济大学 汽车学院, 上海 201804;2.同济大学 新能源汽车工程中心, 上海 201800

作者简介:

常国峰(1976—),男,副教授,博士生导师,主要研究方向为燃料电池热管理。E-mail:changguofeng@tongji.edu.cn

中图分类号:

U473.4

基金项目:

企业委托项目(kh0170920203933)


Effects of Inlet Gas Temperature and Relative Humidity on Performance Characteristics of PEM Fuel Cell
Author:
Affiliation:

1.School of Automobile Studies, Tongji University, Shanghai 201804, China;2.Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201800, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究阴阳极气体进口温度和相对湿度(relative humidity,RH)对质子交换膜燃料电池输出性能的影响,构建了一维非等温的两相模型,并采用团聚体子模型考虑催化层微观结构的影响。结果表明:阴阳极相对湿度相同时,干工况(RHa 50% / RHc 50%)下工作温度对燃料电池输出性能的影响有限;不同工作温度时获得的最高电流密度所对应的RH工况不同,90℃时可在高阳极湿度/低阴极湿度工况(RHa 90% / RHc 50%)下获得最高的电流密度,而70℃适合于在高湿度环境(RHa 90% / RHc90 %)下获得更好的输出性能。然后,基于粒子群算法,优化得出阳极湿度恒为90%、且在低阴极RH 0~50%时,温度越高,获得最大功率密度的阴极湿度越小。工作温度和阴极RH分别控制在90℃和14.6%时可获得最高的功率密度,约为0.88 W/cm2

    Abstract:

    A one-dimensional, non-isothermal, two-phase model was employed to investigate the effects of inlet gas temperature and relative humidity (RH) on the output performance of proton exchange membrane fuel cell (PEMFC). A cathode catalyst layer (CL) agglomerate sub-model was also coupled into the model to consider the impact of the micro-structure in CL. It is found that the influence of operating temperature on the output performance of PEMFC is limited at the dry case (RHa50%/RHc50%). The highest current density at various operating temperatures corresponds to different RH conditions. When the operating temperature is 90℃, the highest current density is attained at the RHa 90% / RHc 50% case, while a lower inlet temperature (70℃) has the highest current density at the RHa 90% /RHc 90% case. Additionally, when the RHa is constant at 90% and RHc is kept at a low level (0?50%), the RHc corresponding to the maximum power density is lower with a higher temperature based on particle swarm optimization. Under whole operating conditions, the peak power density can be up to 0.88 W/cm2 when the operating temperature is 90℃ and RHc is 14.6%.

    参考文献
    [1] TANC B, ARAT H T, BALTACIOGLU E, et al. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2019, 44:10120.
    [2] ZHANG G, WU L, QIN Z, et al. A comprehensive three-dimensional model coupling channel multi-phase flow and electrochemical reactions in proton exchange membrane fuel cell[J]. Advances in Applied Energy, 2021, 2: 100033.
    [3] MUIRHEAD D, BANERJEE R, GEORGE M G, et al. Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Electrochimica Acta, 2018, 274: 250.
    [4] NISHIMURA A, YOSHIMURA M, KAMIYA S, et al. Impact of relative humidity of supply gas on temperature distributions in single cell of polymer electrolyte fuel cell when operated at high temperature[J]. Journal of Energy and Power Engineering, 2017, 11: 706.
    [5] AKITOMO F, SASABE T, YOSHIDA Y, et al. Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water[J]. Journal of Power Sources, 2019, 431: 205.
    [6] LI Y, PEI P, WU Z, et al. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells[J]. Applied Energy, 2018, 224: 42.
    [7] JANICKA E, MIELNICZEK M, GAWEL L, et al. The impact of air humidity on the operation of proton exchange membrane fuel cells determined using dynamic electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2020, 341: 136036.
    [8] ZHANG G, WU J, WANG Y, et al. Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119294.
    [9] 王旭辉, 许思传, 董雅倩. 质子交换膜燃料电池一维气液两相流模型研究[J]. 同济大学学报(自然科学版), 2019, 47: 69.WANG X H, XU S C, DONG Y Q. One-dimensional model investigation for two-phase transport in polymer electrolyte membrane fuel cell[J]. Journal of Tongji University (Natural Science Edition), 2019, 47: 69.
    [10] CHEN H, LIU B, ZHANG T, et al. Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions[J]. Applied Energy, 2019, 255: 113849.
    [11] WANG Q, LI B, YANG D, et al. Research progress of heat transfer inside proton exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 492: 229613.
    [12] KIM S, MENCH M M. Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Thermo-osmosis in membranes[J]. Journal of Membrane Science, 2009, 328: 113.
    [13] POLLARD W G, PRESENT R D. On gaseous self-diffusion in long capillary tubes[J]. Physical Review, 1948, 73 (7): 762.
    [14] PISANI L. Multi-component gas mixture diffusion through porous media: a 1D analytical solution[J]. International Journal of Heat and Mass Transfer, 2008, 51: 650.
    [15] XU Y, FAN R, CHANG G, et al. Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model. Energy Conversion and Management, 2021, 248: 114791.
    [16] LI S, YUAN J, XIE G, et al. Effects of agglomerate model parameters on transport characterization and performance of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43: 8451.
    [17] AFZAL A, RAMIS M K. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics[J]. Journal of Energy Storage, 2020, 32: 101815.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常国峰,许艺鸣,樊芮嘉.进口温湿度对质子交换膜燃料电池输出性能的影响[J].同济大学学报(自然科学版),2021,49(S1):231~237

复制
分享
文章指标
  • 点击次数:210
  • 下载次数: 822
  • HTML阅读次数: 110
  • 引用次数: 0
历史
  • 收稿日期:2021-10-26
  • 在线发布日期: 2023-02-28
文章二维码