三种运行参数对PEMFC动态响应的数值分析
CSTR:
作者:
作者单位:

1.北京建筑大学 机电与车辆工程学院, 北京 100044;2.北京建筑大学 北京市建筑安全监测工程技术研究中心, 北京 100044;3.清华大学 汽车安全与节能国家重点实验室, 北京 100084;4.新加坡科学技术研究局, 新加坡 637662

作者简介:

刘鑫桐(1994—),女,天津市,研究生,主要研究方向为质子交换膜燃料电池。E-mail:lxtxx2019@163.com

通讯作者:

刘永峰(1973—),男,教授,博士生导师,研究方向:车用质子交换膜燃料电池。E-mail:liuyongfeng@bucea.edu.cn

中图分类号:

U473.4

基金项目:

北京市建筑安全监测工程技术研究中心研究基金(BJC2020K005); 汽车安全与节能国家重点实验室开放基金(KFY2218)


Numerical Analysis of Three Operating Parameters on Dynamic Cell Performance of Proton Exchange Membrane Fuel Cell
Author:
Affiliation:

1.School of Mechanical-Electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;2.Beijing Engineering Research Center of Monitoring for Construction Safety, School of Mechanical-Electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;3.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;4.Singapore Institute of Manufacturing Technology (SIMTech), 637662 Singapore

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了探究在电流阶跃变化中工作温度、相对湿度和背压等运行参数对质子交换膜燃料电池(PEMFC)性能的影响,运用相对湿度和工作温度之间的耦合变化推导出了动态计算(DT)模型。该模型通过工作温度和相对湿度来阐述膜电极参数和PEMFC性能之间的特性关系,并分析在电流阶跃变化中这两种运行参数对质子交换膜(PEM)内水传递特性、输出电压和功率密度随时间变化的瞬态响应的差异。采用理论计算结合试验的方式,首先通过自定义函数(UDF)将DT模型导入到Fluent软件中进行计算并应用有限体积法进行求解;其次开展PEMFC动态负载性能测试,测量工作温度为50℃、60℃、70℃,背压为0、10 kPa,相对湿度为50%、75%、100%,同时改变电流负载(阶跃幅度为5 A)来实现PEMFC对电流阶跃动态响应的测试;最后通过极化曲线和I-P曲线对DT模型和试验数据进行比较分析。结果表明:实验数据与DT模型的仿真结果之间有很好的相关性;不对称加湿是影响功率密度的一个主导参数;阳极相对湿度决定了功率密度在发生阶跃电流后稳定运行的能力;PEM水含量与功率密度下冲幅度和响应时间有关。因此,工作温度为60℃、背压为10 kPa、阳极相对湿度为75%、阴极相对湿度为100%时,PEMFC的动态性能最佳。

    Abstract:

    In order to characterize the effects of operating temperature, relative humidity, and back pressure on the proton exchange membrane fuel cell (PEMFC) performance at the applied step current, a dynamic transfer (DT) model that accounts for the coupled variation between relative humidity and operating temperature is established, which illustrates the characteristic relationship between membrane electrode parameters and PEMFC performance parameters in terms of operating temperature and relative humidity, and analyses the differences between two operating parameters on the transient response of water transport inside PEM, output voltage, and power density distribution with time at the applied step current. A combination of theoretical calculations and experiments is proposed. First, the DT model including geometry and meshes is embedded into Fluent and the data in the solver of Fluent is called to simulate the electrochemical reactions. Secondly, experiments are conducted regarding the effect of temperature(50 ℃, 60 ℃ and 70 ℃), back pressure(0 and 10 kPa), and relative humidity(50%, 75% and 100%) on the transient response like voltage and power density. Finally, the transient response for voltage output, water transport inside the PEM, and power density distribution with time via polarization curves, contours, and I-P curves with time are compared and analyzed. The results indicate that the DT model is in good agreement with the experimental data observed, which elucidates that the anode relative humidity determines the capability of power density to operate steadily after the applied step current and the power density response time and the amplitude of undershoot are related to membrane. When the back pressure is 10 kPa,the anode relative humidity is 75%, and the cathode relative humidity is 100% at an operating temperature of 60 °C, PEMFC has the best dynamic performance.

    参考文献
    [1] 王洪建, 程健, 张瑞云, 等. 质子交换膜燃料电池应用现状及分析[J]. 热力发电, 2016, 45(3): 1.WANG Hongjian, CHENG Jian, ZHANG Ruiyun, et al. Development analysis of proton exchange membrane fuel cell applications[J]. Thermal Power Generation, 2016, 45(3): 1.
    [2] 李一鸣,戴海峰,袁浩.进气条件对PEMFC动态响应的影响[J].电池,2021,51(2):122.LI Yiming, DAI Haifeng, YUAN Hao. Influence of intake condition on dynamic response of PEMFC[J]. Battery Bimonthly, 2021, 51(2): 122.
    [3] MA R, LIU C, ZHENG Z X, et al. CPU-FPGA based real-time simulation of fuel cell electric vehicle[J]. Energy Conversion and Management, 2018, 174(10): 983.
    [4] 刘永峰, 王娜, 裴普成, 等.电池堆中电压衰减最快电池的仿真和试验研究[J].同济大学学报(自然科学版), 2017, 45(S1): 121.LIU Yongfeng, WANG Na, PEI Pucheng, et al. Simulation and experiment investigation for fastest voltage attenuation single cell in vehicle fuel cell stack[J]. Journal of Tongji University (Natural Science), 2017, 45(S1): 121.
    [5] IJAODOLA O S, EL-HASSAN Z, OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179(7): 246.
    [6] GOU I, PEI P, YING W. The dynamic behavior of pressure during purge process in the anode of a PEM fuel cell[J]. Journal of Power Sources, 2006, 162(2): 1104.
    [7] WANG Y, WANG C Y. Dynamics of polymer electrolyte fuel cells undergoing load changes[J]. Electrochim Acta, 2006, 51: 3924.
    [8] ZHANG G, JIAO K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy Conversion and Management, 2018, 176(11): 409.
    [9] HUANG Z, SHEN J, CHAN S H, et al. Transient response of performance in a proton exchange membrane fuel cell under dynamic loading[J]. Energy Conversion and Management, 2020, 226:113492.
    [10] FU H, SHEN J, SUN L, et al. Fuel cell humidity modeling and control using cathode internal water content[J]. International Journal of Hydrogen Energy, 2020, 46(15): 3429.
    [11] HAMELIN J, AGBOSSOU K, LAPERRI`ERE A, et al. Dynamic behavior of a PEM fuel cell stack for stationary applications[J]. Int J Hydrogen Energy, 2001, 26: 625.
    [12] SOLSONA M, KUNUSCH C, OCAMPO-MARTINEZ C. Control-oriented model of a membrane humidifier for fuel cell applications[J]. Energy Conversion and Management, 2017, 137(4): 121.
    [13] DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: A review[J]. Renewable Energy, 2017, 113(12): 620.
    [14] JING Z, JIAN Q, LUO L, et al. Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2018, 145: 343.
    [15] TANG Y, YUAN W, PAN M, et al. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes[J]. Appl Energy, 2010, 87: 1410.
    [16] HUANG Z, SHEN J, CHAN S H, et al. Transient response of performance in a proton exchange membrane fuel cell under dynamic loading[J]. Energy Conversion and Management, 2020, 226:113492.
    [17] KIM B, CHA D, KIM Y. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions[J]. Appl Energy, 2015, 138: 143.
    [18] LOO K H, WONG K H, TAN S C, et al. Characterization of the dynamic response of proton exchange membrane fuel cells – a numerical study[J]. Int J Hydrogen Energy, 2010, 35: 11861.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘鑫桐,刘永峰,裴普成,张璐,姚圣卓,毕贵军.三种运行参数对PEMFC动态响应的数值分析[J].同济大学学报(自然科学版),2021,49(S1):238~244

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-10
  • 在线发布日期: 2023-02-28
文章二维码