基于动态客流量模型的地铁车站空调负荷预测
作者:
作者单位:

1.同济大学 机械与能源工程学院,上海 201804;2.同济大学 工程结构性能演化与控制教育部重点实验室,上海 200092;3.广州地铁设计研究院股份有限公司 节能和环保技术中心,广东 广州 510010

作者简介:

苏醒(1982—),男,副教授,博士生导师,工学博士,主要研究方向为低能耗除湿技术.E-mail: suxing@tongji.edu.cn

通讯作者:

中图分类号:

TU96

基金项目:

“十三五”国家重点研发计划专项资助(2016YFC0700100)


Cooling Load Prediction for Metro Station Based on Dynamic Passenger Flow Model
Author:
Affiliation:

1.School of Mechanical Engineering, Tongji University, Shanghai 201804, China;2.Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University, Shanghai 200092, China;3.Energy Conservation and Environmental Protection Technology Center, Guangzhou Metro Design and Research Institute Co., Ltd., Guangzhou 510010, Guangdong, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确预测地铁车站的空调负荷,首先通过地铁车站能耗监测平台的历史数据分析,识别得到客流量和室外气象参数是主要影响因素。其次利用车站CO2体积浓度逐时监测数据建立客流量神经网络预测模型,并与闸机数据对比,预测模型的复相关系数R2可达0.87。以客流量预测为基础,建立了车站空调负荷预测模型,并比较了不同时间尺度训练数据下误差反向传播神经网络算法和支持向量机算法的预测效果,两种算法的R2达到了0.95以上,均方根误差在70~90 kW之间,预测精度较高,但支持向量机算法的运算时间是误差反向传播神经网络算法的3~4倍左右,推荐数据量较大时优先选择神经网络算法。

    Abstract:

    In order to accurately predict the cooling load of metro stations, firstly, by analyzing the historical data from the metro station monitoring platform, the passenger flow and meteorological parameters are identified as the main influential factors. Then, a dynamic passenger flow neural network prediction model is established, by utilizing the hourly monitored carbon dioxide volume concentration data in the metro station, A comparion of the carbon dioxide data with the automatic fare collection data indicates that the correlation coefficient R2 of the prediction model can reach 0.87. After that, based on passenger flow prediction, the cooling load predicting model of the metro station is built. A comparsion of the predicting performance of back propagation neural network and support vector machine algorithm under different time scale training data suggests that the R2 of both models can reached 0.95 or higher, and the root mean square error is between 70 kW and 90 kW, which is of a high prediction accuracy. However, the calculation time of the support vector machine algorithm is about 3 to 4 times that of the back propagation neural network algorithm. The neural network model is recommended when the amount of data is large.

    参考文献
    相似文献
    引证文献
引用本文

苏醒,王磊,田少宸,秦旭.基于动态客流量模型的地铁车站空调负荷预测[J].同济大学学报(自然科学版),2022,50(1):114~120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-17
  • 出版日期:
文章二维码