两类YOLOv4-tiny简化网络及其裂缝检测性能比较
作者:
作者单位:

1.上海交通大学 学生创新中心,上海 200240;2.上海交通大学 机械与动力工程学院,上海 200240

作者简介:

宋立博(1973—),男,副研究员,工学博士,主要研究方向为特种机器人及智能控制. E-mail: lbsong@sjtu.edu.cn

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(51875335)


Comparison of Two Types YOLOv4-tiny Simplified Networks and Their Crack Detection Performance
Author:
Affiliation:

1.Student Innovation Center, Shanghai Jiao Tong University,Shanghai 200240, China;2.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向国内高大建筑物裂缝检测市场实际需求,考虑现有YOLOv4-tiny深度网络结构在树莓派等边缘设备上运行速度慢的缺点,使用去除第二层残差网络、增加一个maxpool池化层及改变最后一个route层连接的方法生成YOLOv4-lite1和YOLOv4-lite2两种新的简化版YOLOv4-tiny深度网络结构。使用从百度上搜索的裂缝图片生成裂缝检测的训练集、测试集和验证集数据,在Ubuntu16.04系统上使用Darknet深度学习框架进行了训练。同时,在树莓派4B上进行的实际测试表明,YOLOv4-lite1具有更快运行速度、检出率和稳定性。该研究创新点在于进一步精简了YOLOv4-tiny网络结构和最后一层route层的连接,从而获得两种新YOLOv4-tiny深度网络结构形式和较佳检测效果。

    Abstract:

    To meet the demands of crack detection market in domestic tall buildings, taking the shortcomings of the fact that the existing YOLOv4-tiny deep network structure runs slowly on such edge devices as Raspberry Pi into account, two novel simplified YOLOv4-tiny deep network structures, that is, YOLOv4-lite1 and YOLOv4-lite2 were deduced by removing the second residual network, as well as adding a maxpool layer and changing the connection of the last route layer in this paper. The training set, the test set, and the verification set data of crack detection were then generated by using the crack pictures downloaded from the internet, and the training is conducted on a 64-bit Ubuntu16.04 system utilizing the Darknet deep learning framework. At the same time, the actual tests on the RaspberryPI 4B show that the YOLOv4-lite1 structure has a faster running speed, detection rate, and stability compared to the YOLOv4-lite2 structure. Finally, the next step of this related work is pointed out. The innovation of this research lies in further simplifying the YOLOv4-tiny network structure and the connection of the last layer route layer, thus obtaining two new YOLOv4-tiny deep network structures and better detection results.

    参考文献
    相似文献
    引证文献
引用本文

宋立博,费燕琼.两类YOLOv4-tiny简化网络及其裂缝检测性能比较[J].同济大学学报(自然科学版),2022,50(1):129~137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-17
  • 出版日期:
文章二维码