基于多源数据融合的高铁枢纽多模式换乘客流分担率估计
作者:
作者单位:

北京航空航天大学 交通科学与工程学院,北京 102206

作者简介:

马晓磊(1985—),男,教授,博士生导师,工学博士,主要研究方向为交通大数据分析与公共交通。 E-mail: xiaolei@buaa.edu.cn

通讯作者:

中图分类号:

U491

基金项目:

国家重点研发计划(2021YFB1600100);北京市自然科学基金(8212010)


Estimation Passenger Transfer Demand Multimodal Split in a High-Speed Railway Hub Based on Multi-Source Data Fusion
Author:
Affiliation:

School of Transportation Science and Engineering, Beihang University, Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现高铁客运枢纽换乘客流分担率的精准辨识,研究结合多模式公共交通大数据,提出了一类基于广义出行链的高铁客运枢纽换乘方式选择模型。通过对不同公共交通方式换乘阶段的关联和融合,提取以高铁客运枢纽为端点的个体广义出行链,分析高铁客运枢纽换乘客流的时空分布特征;综合考虑高铁客运枢纽乘客的个体经济社会属性、主观心理因素及其个体出行特征对换乘方式选择行为的影响,并结合个体广义出行链的特征,基于多指标多原因(MIMIC)模型和多元logit(MNL)模型提出高铁客运枢纽乘客换乘方式选择模型。以北京南站实际数据作为模型的输入,得到了换乘客流方式分担率的估计值。比对分析估计值和真实值可知,误差在可接受范围内。

    Abstract:

    In order to accurately identify travel mode split rate of transfer passenger flow in high-speed rail hubs, a travel mode choice model is proposed based on a generalized trip chain model based on multimodal public transportation big data. Through the correlation and fusion of different public transportation modes in the transfer phase, the individual generalized trip chain with the high-speed rail hub as the origin is extracted. Then, the temporal-spatial distribution characteristics of the transfer flow in high-speed rail hubs are analyzed. Comprehensively considering the influence of individual economic and social attributes, and subjective psychological factors in combination with individual travel characteristics on transfer mode choice behavior, a transfer mode choice model for passengers in high-speed rail hubs is proposed based on multiple indicators and multiple causes (MIMIC) and multi-nominal logit(MNL) model. Taking the actual data of Beijing South Railway Station as the input, the estimated travel mode split rate of the commuting passenger flow is obtained. A comparison and analysis of ground true data indicates that the estimation error is within an acceptable range.

    参考文献
    相似文献
    引证文献
引用本文

马晓磊,刘兵,姚李亮.基于多源数据融合的高铁枢纽多模式换乘客流分担率估计[J].同济大学学报(自然科学版),2022,50(3):309~319

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码