基于点云数据的道路变形类病害自动化检测方法
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.上海城市基础设施更新工程技术研究中心,上海 200032;3.上海城投公路投资(集团)有限公司,上海 200335

作者简介:

潘 宁(1995—),女,博士生,主要研究方向为基础设施智能检测和新兴计算。 E-mail: pann@tongji.edu.cn

通讯作者:

杜豫川(1976—),男,教授,博士生导师,工学博士,主要研究方向为交通全息感知与智能计算技术及其在智慧高速、车路协同领域的应用。 E-mail: ycdu@tongji.edu.cn

中图分类号:

U418

基金项目:

国家自然科学基金(51978519);上海市科学技术委员会资助项目(20DZ2251900);中央引导地方科技发展专项(YDZX20193100004845);上海市科学技术委员会社会发展科技攻关项目(21DZ1200601)


Automatic Detection Method of Pavement Deformation Distress Based on Point Cloud Data
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Engineering Research Center of Urban Infrastructure Renewal,Shanghai 200032,China;3.Shanghai Chengtou Highway Investment(Group) Co. Ltd., Shanghai 200335, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    拥包、沉陷等路面变形是常见的病害类型,但传统基于二维图像的判断方法无法获取深度信息,线性激光扫描的方法精度较高但是单次扫描范围有限,难以短时获取全局状况,导致大尺度变形类病害识别困难。利用车载移动激光雷达系统获取三维点云数据,解决了变形类病害检测的难点,并可提取其三维特征。实测数据验证了方法的可靠性和有效性,可实现拥包、沉陷和坑槽等变形病害的自动化检测,有效提高了检测效率。与全站仪测量结果对比,该方法三维特征提取信息完整且准确率达84.662%。

    Abstract:

    Shoving and subsidence are common pavement distresses. However, the traditional judgment method based on two-dimensional image cannot obtain depth information. The linear laser scanning method is precise, yet the single scan range is limited. Thus, it is difficult to obtain the global situation in a short time when identifying deformation distresses. A method is proposed for detecting deformation distresses and extracting their 3D features by using a vehicle-mounted mobile lidar system. Point cloud data are segmented and abnormal deformation points are extracted. 3D features of deformation distress are obtained. The reliability and effectiveness of the method are verified by the measured data. The results show that the method can automatically detect the deformation such as shoving, subsidence, and potholes. It can effectively improve the detection efficiency. Compared with the total station measurement results, the 3D feature extraction results are complete with an accuracy of 84.662%.

    参考文献
    相似文献
    引证文献
引用本文

潘宁,杜豫川,岳劲松,魏斯瑀,刘成龙,吴荻非.基于点云数据的道路变形类病害自动化检测方法[J].同济大学学报(自然科学版),2022,50(3):399~408

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码