扩展键基近场动力学的几何非线性扩展
CSTR:
作者:
作者单位:

1.河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098;2.河海大学 土木与交通学院,江苏 南京 210098

作者简介:

朱其志(1979—),男,教授,博士生导师,主要研究方向为本构关系和数值计算方法。 E-mail: qzhu@hhu.edu.cn

通讯作者:

李惟简(1994—),男,博士生,主要研究方向为非局部数值计算方法。E-mail: weijian_li@hhu.edu.cn

中图分类号:

TU45

基金项目:

中央高校基本科研业务费专项资金(B200203095);江苏省研究生科研与实践创新计划(KYCX20_0450)


Geometrical Nonlinear Extension of Extended Bond-Based Peridynamic Model
Author:
Affiliation:

1.Key Laboratory of the Ministry of Education for Geomechanics and Embankment Engineering, Hohai University,Nanjing 210098, China;2.College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    扩展键基近场动力学模型解决了经典模型中固定泊松比的限制问题,但是仅限应用于小变形情况下的模拟。提出了一种计算键变形的实现方法,利用有限变形理论中的描述使模型能够处理几何非线性问题。 通过最小二乘拟合得到物质点的局部位移场,再对位移函数求导得到局部域的变形梯度张量。固体的旋转与拉伸通过对变形梯度张量的极分解分离,从而将扩展键的变形部分从总体位移中提取。随后,通过对变形系统的各个键力进行积分,从而获得系统大变形的正确预测结果。最后,开展了几个基准测试,与非线性有限元结果进行对比并验证了所提出模型的有效性和精确性。

    Abstract:

    The extended bond-based peridynamic (XPD) model resolved the limitation of fixed Poisson’s ratio in the classical model for small deformation problems. In this paper, a novel implementation using the finite deformation formulation is proposed to deal with geometrical nonlinear problems. The rotation of solid is calculated by the polar decomposition of the deformation gradient tensor derived from the least square fitting of the local displacement field. Therefore, the deformed part of the bond deflection can be separated from the general displacements, and then correct large deformation predictions can be obtained by integrating each bond force of the deformed system. Several benchmark studies are presented to demonstrate the predictive ability of the proposed model.

    参考文献
    [1] SILLING S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics Physics of Solids, 2000, 48(1) : 175.
    [2] SILLING S, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, 83(17) : 1526.
    [3] SILLING S, LEHOUCQ R. Peridynamic theory of solid mechanics[J]. Advances in Applied Mechanics, 2010, 44: 73.
    [4] ASKARI E, BOBARU F, LEHOUCQ R, et al. Peridynamics for multiscale materials modeling[J]. Journal of Physics: Conference Series, 2008, 125: 012078.
    [5] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer, 2014.
    [6] TONG Y, SHEN W, SHAO J, et al. A new bond model in peridynamics theory for progressive failure in cohesive brittle materials[J]. Engineering Fracture Mechanics, 2020, 223: 106767.
    [7] ZHANG H, QIAO P. Virtual crack closure technique in peridynamic theory[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113318.
    [8] WANG Y, ZHOU X, SHOU Y. The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics[J]. International Journal of Mechanical Sciences, 2017, 128/129: 614.
    [9] SILLING S, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151.
    [10] ZHOU X P, WANG Y T, SHOU Y D, et al. A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads[J]. Engineering Fracture Mechanics, 2018,188: 151.
    [11] WANG Y T, ZHOU X P, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures, 2018, 134: 89.
    [12] HU Y L, MADENCI E. Bond-based peridynamics with an arbitrary poisson’s ratio[C]// 57th Structures, Structural Dynamics, and Materials Conference. San Diego:AIAA/ASCE/AHS/ASC, 2016:4–8.
    [13] CHOWDHURY S, RAHAMAN M, ROY D, et al. A micropolar peridynamic theory in linear elasticity[J]. International Journal of Solids and Structures, 2015, 59: 171.
    [14] MADENCI E, OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von mises yield criteria with isotropic hardening[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 192.
    [15] PASHAZAD H, KHARAZI M. A peridynamic plastic model based on von mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading[J]. International Journal of Mechanical Sciences, 2019, 156: 182.
    [16] LIU Z, BIE Y, CUI Z, et al. Ordinary state-based peridynamics for nonlinear hardening plastic materials’ deformation and its fracture process[J]. Engineering Fracture Mechanics, 2020, 223: 106782.
    [17] KAZEMI S R. Plastic deformation due to high-velocity impact using ordinary state-based peridynamic theory[J]. International Journal of Impact Engineering, 2020, 137: 103470.
    [18] AHMADI M, HOSSEINI-TOUDESHKY H, SADIGHI M. Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual-phase materials[J]. Engineering Fracture Mechanics, 2020, 235: 107179.
    [19] NGUYEN C T, OTERKUS S. Ordinary state-based peridynamic model for geometrically nonlinear analysis[J]. Engineering Fracture Mechanics, 2020, 224: 106750.
    [20] NGUYEN C T, OTERKUS S. Ordinary state-based peridynamics for geometrically nonlinear analysis of plates[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102877.
    [21] ZHU Q Z, NI T. Peridynamic formulations enriched with bond rotation effects[J]. International Journal of Engineering Science, 2017, 121: 118.
    [22] LI W J, ZHU Q Z, NI T. A local strain-based implementation strategy for the extended peridynamic model with bond rotation[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112625.
    [23] DIYAROGLU C, OTERKUS E, OTERKUS S, et al. Peridynamics for bending of beams and plates with transverse shear deformation[J]. International Journal of Solids and Structures, 2015, 69/70: 152.
    [24] O’GRADY J, FOSTER J. Peridynamic plates and flat shells: A non-ordinary, state-based model[J]. International Journal of Solids and Structures, 2014, 51(25): 4572.
    [25] NGUYEN C T, OTERKUS S. Peridynamics for the thermomechanical behavior of shell structures[J]. Engineering Fracture Mechanics, 2019, 219: 106623.
    [26] NGUYEN C T, OTERKUS S. Investigating the effect of brittle crack propagation on the strength of ship structures by using peridynamics[J]. Ocean Engineering, 2020, 209: 107472.
    [27] LIEW K, NG T, WU Y. Meshfree method for large deformation analysis-a reproducing kernel particle approach[J]. Engineering Structures, 2002, 24(5): 543.
    [28] GU Y, WANG Q, LAM K. A meshless local kriging method for large deformation analyses[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(9): 1673.
    [29] GU Y. An adaptive local meshfree updated lagrangian approach for large deformation analysis of metal forming[J]. Advanced Materials Research, 2010, 97-101: 2664.
    [30] ZHAO G. Development of the distinct lattice spring model for large deformation analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38: 1078.
    [31] XIE H P. Analysis of nonlinear large deformation problems by boundary element method[J]. Applied Mathematics and Mechanics, 1988, 9: 1153.
    [32] CHANDRA A, MUKHERJEE S. Boundary element formulations for large strain-large deformation problems of viscoplasticity[J]. International Journal of Solids and Structures, 1984, 20(1): 41.
    [33] HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327.
    [34] NAZEM M, CARTER J P, SHENG D, et al. Alternative stress-integration schemes for large-deformation problems of solid mechanics[J]. Finite Elements in Analysis and Design, 2009, 45(12): 934.
    [35] ALSAFADIE R, HJIAJ M, BATTINI J M. Corotational mixed finite element formulation for thin-walled beams with generic cross-section[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(49): 3197.
    [36] MORESI L, DUFOUR F, MUHLHAUS H B. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of Computational Physics, 2003, 184(2): 476.
    [37] HOGER A, CARLSON D E. Determination of the stretch and rotation in the polar decomposition of the deformation gradient[J]. Quarterly of Applied Mathematics, 1984, 42(1): 113.
    [38] KILIC B, MADENCI E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(3): 194.
    [39] HESCH C, GIL A J,ORTIGOSA R,et al. A framework for polyconvex large strain phase-field methods to fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 649.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱其志,李惟简,尤涛,曹亚军.扩展键基近场动力学的几何非线性扩展[J].同济大学学报(自然科学版),2022,50(4):455~462

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-27
  • 在线发布日期: 2022-05-06
文章二维码