一种面向智能车辆视觉系统的电子稳像算法
CSTR:
作者:
作者单位:

1.东南大学 机械工程学院,江苏 南京 211189;2.东南大学 仪器科学与工程学院,江苏 南京 210096

作者简介:

张 宁(1985—),男,副教授,工学博士,主要研究方向为运载系统动力学及其智能化。 E-mail: nzhang_cn@seu.edu.cn

通讯作者:

阳 媛(1984—),女,副教授,工学博士,主要研究方向为智能体的感知、导航与定位。 E-mail: yangyuan@seu.edu.cn

中图分类号:

U461.4

基金项目:

国家自然科学基金 (52072072;52025121)


An Electronic Image Stabilization Algorithm for Vision System of Intelligent Vehicles
Author:
Affiliation:

1.School of Mechanical Engineering, Southeast University, Nanjing 211189, China;2.School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    车载摄像头是智能车辆视觉系统中必不可少的部件。在恶劣道路或极限工况下,车辆的振动状况显著,车载摄像头采集到的图像序列会发生抖动。针对此问题,提出了一种适用于车辆复杂工况的电子稳像算法。基于车载工况下的实时性要求,选择ORB(oriented FAST and rotated BRIEF)算法进行特征检测与描述。为了提高特征点匹配精度与匹配效率,改进了传统随机采样一致性算法,增强了其对多匹配点、匹配点集中工况的适应性。为了适应车载工况下的剧烈振动,采用了自适应卡尔曼滤波算法以解决经典的卡尔曼滤波对初值敏感的问题。最后搭建了一辆振动特性显著的汽油模型车,在恶劣的路面条件下开展了实验,在较正常工况更为极端的条件下验证了提出的电子稳像算法的正确性与有效性。

    Abstract:

    Vehicular camera is an essential part of the vision system of intelligent vehicles. In harsh road or extreme conditions, due to the significant vibration of vehicles, the image sequence collected by the vehicular camera vibrates. Aimed at this problem, an electronic image stabilization algorithm for vehicle vision system is proposed. Considering the real-time requirements under vehicle conditions, the ORB algorithm (oriented fast and rotated BRIEF) is selected for feature detection and description. In order to improve the accuracy of matching and the efficiency of feature points, the traditional random sampling consistency algorithm is improved to enhance its adaptability to multiple and centralized matching points. The classical Kalman filter is sensitive to the initial value. Therefore, to adapt to the extreme conditions, the adaptive Kalman filter is used. Finally, a gasoline model vehicle with significant vibration characteristics is established, and experiments are conducted under harsh road conditions. The correctness and effectiveness of the proposed electronic image stabilization algorithm are verified under conditions more extreme than normal.

    参考文献
    [1] 罗瑾, 许杰. 基于车道线交点的车载视频稳像算法[J]. 计算机技术与发展, 2013, 23(3): 1.
    [2] YOUSAF A, KHURSHID K, KHAN M J, et al. Real time video stabilization methods in IR domain for UAVs—A review[C]// 2017 Fifth International Conference on Aerospace Science & Engineering. Islamabad: Institute of Electrical and Electronics Engineers Inc, 2017: 1-9.
    [3] RAJ R, RAJIV P, KUMAR P, et al. Feature based video stabilization based on boosted HAAR Cascade and representative point matching algorithm[J]. Image and Vision Computing, 2020, 101: 103957.
    [4] HAN C. An improved Harris corner detection algorithm based on adaptive gray threshold[C]//Proceedings of 2019 4th International Conference on Automatic Control and Mechatronic Engineering. Chongqing: Clausius Scientific Press, 2019: 304-308.
    [5] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 2(60): 91.
    [6] BAY H, ANDREAS E, TINNE T, et al. SURF: Speeded up robust features[J]. Computer Vision and Image Understanding, 2008, 110(3): 346.
    [7] EDWARD R, TOM D. Machine learning for high-speed corner detection[C]// 9th European Conference on Computer Vision. Graz: Springer Verlag, 2006: 430-443.
    [8] MATSUSHITA Y, OFEK E, GE W, et al. Full-frame video stabilization with motion inpainting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1150.
    [9] 熊晶莹. 基于特征提取与匹配的车载电子稳像方法研究[D]. 北京:中国科学院大学, 2017.
    [10] WANG Y, CHANG R, CHUA T W, et al. Video stabilization based on high degree b-spline smoothing[C]// Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba: Institute of Electrical and Electronics Engineers Inc, 2012: 3152-3155.
    [11] REN Z, CHEN C, FANG M. Electronic image stabilization algorithm based on smoothing 3D rotation matrix[C]// 2017 3rd IEEE International Conference on Computer and Communications.Chengdu: Institute of Electrical and Electronics Engineers Inc, 2017: 2752-2755.
    [12] CHENG X, HAO Q, XIE M. A comprehensive motion estimation technique for the improvement of EIS Methods based on the SURF algorithm and Kalman filter[J]. Sensors, 2016, 16(4): 486.
    [13] LAKSHYA K, INDU S. A hybrid filtering approach of digital video stabilization for UAV using Kalman and low pass filter[J]. Procedia Computer Science, 2016, 93: 359.
    [14] PARK R Y, PAK J M, AHN C K, et al. Image stabilization using FIR filters[C]// 2015 15th International Conference on Control, Automation and Systems. Busan: Institute of Electrical and Electronics Engineers Inc, 2015: 1234-1237.
    [15] YANG J, DAN S, MOHAMED M. Robust video stabilization based on particle filter tracking of projected camera motion[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2009, 19(7): 945.
    [16] ZHU J, LI C, XU J. Digital image stabilization for cameras on moving platform[C]// 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Adelaide: Institute of Electrical and Electronics Engineers Inc, 2015: 255-258.
    [17] HE M, HUANG C, XIAO C, et al. Digital video stabilization based on hybrid filtering[C]// 2014 7th International Congress on Image and Signal Processing. Dalian: Institute of Electrical and Electronics Engineers Inc, 2014: 94-98.
    [18] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]// 2011 International Conference on Computer Vision. Barcelona: Institute of Electrical and Electronics Engineers Inc, 2011: 2584-2571.
    [19] 王培宇. 车载电子稳像系统设计[D]. 南京:东南大学, 2016.
    [20] WANG J, ZHENG S, DU Y, et al. Study on the ORB algorithm in the application of Monocular SLAM[J]. Journal of Robotics, Networking and Artificial Life, 2015, 2(3): 186.
    [21] WANG Y, SUN Y, DINAVAHI V. Robust forecasting-aided state estimation for power system against uncertainties[J]. IEEE Transactions on Power Systems, 2020, 35(1):691.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张宁,张浩彬,吴建华,阳媛,殷国栋.一种面向智能车辆视觉系统的电子稳像算法[J].同济大学学报(自然科学版),2022,50(4):497~503

复制
分享
文章指标
  • 点击次数:840
  • 下载次数: 594
  • HTML阅读次数: 153
  • 引用次数: 0
历史
  • 收稿日期:2021-10-18
  • 在线发布日期: 2022-05-06
文章二维码