高性能钢梁的整体稳定性
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.浙江中天恒筑钢构有限公司,浙江 杭州 310000

作者简介:

强旭红(1984—),女,副教授,博士生导师,工学博士,主要研究方向为高性能钢在土木工程领域的应用。E-mail: qiangxuhong@tongji.edu.cn

通讯作者:

姜 旭(1982—),男,副教授,博士生导师,工学博士,主要研究方向为钢结构、钢与组合桥。 E-mail: jiangxu@tongji.edu.cn

中图分类号:

TU391

基金项目:

国家重点研发计划重点专项(2020YFD1100400,2017YFB0304701);国家自然科学基金(51408150,52142804);中央高校基本科研业务费专项资金


Global Stability of High-performance Steel Beams
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Zhejiang Zhongtian Hengzhu Steel Structure Co., Ltd., Hangzhou 310000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    设计了6根Q460和Q500高性能钢梁试件,并进行了受弯整体稳定性试验。考虑试件的初始缺陷,采用Abaqus软件建立有限元模型并对试验过程进行模拟,最后将试验结果和有限元模拟结果与《钢结构设计标准》(GB 50017―2017)、《公路钢结构桥梁设计规范》(JTG D64―2015)中的相关内容进行对比,以校验上述规范对高性能钢梁的适用性。结果表明:荷载?位移曲线的数值模拟结果与试验结果吻合较好;《钢结构设计标准》(GB 50017―2017)和《公路钢结构桥梁设计规范》(JTG D64―2015)对Q460和Q500高性能钢梁整体稳定性计算的适用性较强。

    Abstract:

    Six specimens of high-performance steel beams made of Q460 and Q500 steel were designed to study the overall stability in bending. Considering the initial defects of the specimens, a finite element model was established via Abaqus to simulate the test process. Finally, the test and finite element simulation results were compared with the relevant provisions of the Standard for Design of Steel Structures (GB 50017―2017) and the Specifications for Design of Highway Steel Bridge (JTG D64―2015). It is shown that the simulated load-displacement curve is in good agreement with the test results; the applicability of the two codes on the overall stability of Q460 and Q500 high-performance steel beams is verified.

    参考文献
    [1] 朱希. 高强度结构钢材材料设计指标研究[D]. 北京: 清华大学, 2015.
    [2] SHI Gang, ZHU Xi, BAN Huiyong. Material properties and partial factors for resistance of high-strength steels in China [J]. Journal of Constructional Steel Research, 2016,121:65.
    [3] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2): 50.
    [4] BEG D, HLADNIK L. Slenderness limit of Class 3 I cross-section made of high strength steel[J]. Journal of Constructional Steel Research, 1996, 38(3): 201.
    [5] 高磊, 孙宏才, 徐关尧, 等. 高强钢薄壁箱形截面梁稳定性研究[J]. 建筑结构, 2010, 40(6): 13.
    [6] MA J L, CHAN T M, YOUNG B. Experimental investigation of cold-formed high strength steel tubular beams [J]. Engineering Structures, 2016,126:200.
    [7] WANG J, AFSHAN S, GKANTOU M, et al. Flexural behaviour of hot-finished high strength steel square and rectangular hollow sections [J]. Journal of Constructional Steel Research, 2016,121:97.
    [8] SHI Yongjiu, XU Kelong, SHI Gang, et al. Local buckling behavior of high strength steel welded I-section flexural members under uniform moment [J]. Advances in Structural Engineering, 2018, 21(1):93.
    [9] ELKAWAS A A, HASSANEIN M F, ELCHALAKANI M. Lateral-torsional buckling strength and behavior of high-strength steel corrugated web girders for bridge construction[J]. Thin-Walled Structures, 2018,122:112.
    [10] European Committee for Standardization. Eurcode 3: design of steel structures, Part 1-1, general rules and rules for buildings[S]. London: British Standards Institution, 2010.
    [11] 公路钢结构桥梁设计规范: JTG D64―2015[S]. 北京: 人民交通出版社, 2015.
    [12] 高强钢结构设计标准: JGJ/T 483―2020[S]. 北京: 中国建筑工业出版社, 2020.
    [13] 彭建新, 郑智恒, 肖林发. 两点对称加载下高性能H型钢梁整体稳定性验算[J]. 长沙理工大学学报(自然科学版), 2017, 14(1): 48.
    [14] 沈祖炎, 陈扬骥, 陈以一. 钢结构基本原理[M].第二版. 北京: 中国建筑工业出版社, 2005.
    [15] 崔佳, 龙莉萍. 钢结构基本原理[M]. 北京: 中国建筑工业出版社, 2008.
    [16] 钢结构设计标准: GB 50017―2017[S]. 北京: 中国建筑工业出版社, 2017.
    [27] CUI T, OUYANG Y, SHEN Z J M. Reliable facility location design under the risk of disruptions [J]. Operations Research, 2010, 58:998.
    [28] LEI T L. Identifying critical facilities in hub-and-spoke networks: a hub interdiction median problem [J]. Geographical Analysis, 2013, 45(2):105.
    [29] LI X, OUYANG Y. A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions [J]. Transportation Research, Part B: Methodological, 2010, 44(4):535.
    [30] BERMAN O, KRASS D, MENEZES M B C. Location and reliability problems on a line: impact of objectives and correlated failures on optimal location patterns [J]. Omega, 2013, 41(4):766.
    [31] BERMAN O, KRASS D, MENEZES M B C. Locating facilities in the presence of disruptions and incomplete information [J]. Decision Sciences, 2009, 40(4):845.
    [32] YUN L, QIN Y, FAN H, et al. A reliability model for facility location design under imperfect information [J]. Transportation Research, Part B: Methodological, 2015, 81:596.
    [33] YUN L, WANG X, FAN H, et al. A reliable facility location design model with site-dependent disruption in the imperfect information context [J]. PLoS ONE, 2017, 12(5):e0177104.
    [34] YUN L, WANG X, FAN H, et al. Reliable facility location design with round-trip transportation under imperfect information, Part I: a discrete model [J]. Transportation Research, Part E: Logistics and Transportation Review, 2020, 133: 101821.
    [35] YAN H, ZHANG X, WANG X. Hierarchical passenger hub location problem in a megaregion area considering service availability[J]. Promet: Traffic & Transportation, 2021, 33(2):247.
    [36] 闫黄. 新型城镇化导向下的城市群客运枢纽层级选址研究[D]. 上海:同济大学, 2021.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

强旭红,赵波森,姜旭,徐晗.高性能钢梁的整体稳定性[J].同济大学学报(自然科学版),2022,50(5):642~651

复制
分享
文章指标
  • 点击次数:192
  • 下载次数: 1170
  • HTML阅读次数: 186
  • 引用次数: 0
历史
  • 收稿日期:2021-05-24
  • 在线发布日期: 2022-06-07
文章二维码