混合桥面横向连接构造静力性能
CSTR:
作者:
作者单位:

1.上海市政工程设计研究总院(集团)有限公司, 上海 200092;2.同济大学 土木工程学院, 上海 200092;3.上海高性能组合结构桥梁工程技术研究中心, 上海 200092

作者简介:

戴昌源(1990—),男,工学博士,主要研究方向为钢与组合结构桥梁。E-mail: dai_cy@foxmail.com

通讯作者:

苏庆田(1974—),男,教授,博士生导师,工学博士,主要研究方向为钢与组合结构桥梁。 E-mail: sqt@tongji.edu.cn

中图分类号:

U442.5

基金项目:

上海市科委项目(19DZ2254200)


Static Performance of Transverse Connection Detail of Hybrid Deck
Author:
Affiliation:

1.Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;2.College of Civil Engineering, Tongji University, Shanghai 200092, China;3.Shanghai Engineering Research Center of High Performance Composite Bridges, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    将大跨度桥梁外侧车道及车道以外部分桥面的正交异性钢板替换为超高性能混凝土(UHPC)华夫板而形成混合桥面系统,提出连接2种桥面的横向连接构造。对横向连接构造进行静力弯曲试验和理论分析,得到正、负弯矩作用下的破坏模式、极限承载力、抗裂性能、两侧桥面的协同受弯性能。最后,给出了考虑UHPC开裂后残余应力的断面塑性极限承载力计算方法。结果表明:该横向连接构造有较好的塑性变形能力并协同两侧桥面共同受力,弹性阶段横向连接构造两侧的正交异性钢板和UHPC华夫板断面应变符合平截面假定。由提出的断面承载力理论计算方法预测的正弯矩作用试件极限承载力误差在8%以内,负弯矩作用试件承载力由板件局部屈曲控制,断面承载力理论计算方法须考虑局部稳定的影响。

    Abstract:

    By substituting the orthotropic steel desk(OSD) of nearside lane and emergency lane with a ultra-high performance concrete(UHPC) waffle deck for a large-span bridge, a hybrid deck system was formed. Thus,a transverse connection detail to link the two types of decks was proposed. Specifically, positive and negative bending specimens of the transverse connection detail were designed and tested to determine the failure mode, ultimate bearing capacity, anti-cracking performance, and cooperative moment bearing performance. Lastly, a method of calculating the bearing capacity after cracking was presented by taking into account the residual stress of UHPC. The bridge decks on both sides are able to cooperate with each other in bearing the external load through the transverse connection detail, indicating better plastic deformation capability. The OSD and UHPC waffle decks conform to the plane section assumption in elastic stage. With the proposed bearing capacity calculation method, the bearing capacity of the positive bending specimen can be predicted with satisfactory accuracy and the error is within 8%. Local buckling is an important factor in determining the ultimate bearing capacity of the negative bending specimen, which should be considered when calculating the bearing capacity.

    参考文献
    [1] WOLCHUK R. Lessons from weld cracks in orthotropic decks on three European bridges[J]. Journal of Structural Engineering, 1990, 116(1): 75.
    [2] XIAO Z G, YAMADA K, YA S, et al. Stress analyses and fatigue evaluation of rib-to-deck joints in steel orthotropic decks[J]. International Journal of Fatigue, 2008, 30(8): 1387.
    [3] 曹君辉. 钢?薄层超高性能混凝土轻型组合桥面结构基本性能研究[D]. 长沙:湖南大学,2016.
    [4] 曾志斌.正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J].钢结构,2011,26(2):9.
    [5] 邓学钧, 顾兴宇, 周世忠, 等.钢桥面沥青铺装层裂缝破坏趋势研究[J].公路交通科技,2002(4):4.
    [6] 郝培文, 胡磊, 陈志一, 等.大跨径钢箱梁桥面铺装研究与发展[J].筑路机械与施工机械化,2008(6):12.
    [7] 周晓华, 宗海, 童义和, 等.环氧沥青混凝土钢桥面铺装层病害分析[J].公路交通科技,2006(3):105.
    [8] WANG F Y, XU Y L. Traffic load simulation for long-span suspension bridges[J]. Journal of Bridge Engineering, 2019, 24(5): 16.
    [9] AALETI S, SRITHARAN S, BIERWAGEN D, et al. Structural behavior of waffle bridge deck panels and connections of precast ultra-high-performance concrete experimental evaluation[J]. Transportation Research Record:Journal of the Transportation Research Record, 2011, 2251(1): 82.
    [10] 邵旭东, 吴佳佳, 刘榕, 等. 钢?UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218.
    [11] TOUTLEMONDE F, RESPLENDINO J, SORELLI L, et al. Innovative design of ultra high-performance fiber reinforced concrete ribbed slab: experimental validation and preliminary detailed analyses[C]//7th International Symposium on Utilization of High Strength/High Performance Concrete. Washington DC: [s.n.], 2005:1-10.
    [12] HONARVAR E, SRITHARAN S, ROUSE J M, et al. Bridge decks with precast UHPC waffle panels: a field evaluation and design optimization[J]. Journal of Bridge Engineering, 2016, 21 (1): 1.
    [13] BABY F, MARCHAND P, TOUTLEMONDE F. Analytical modeling of ultra-high-performance fiber-reinforced concrete behavior in ribbed plates[J]. ACI Structural Journal, 2017, 114 (1): 3.
    [14] 邱明红, 邵旭东, 甘屹东, 等. 单向预应力UHPC连续箱梁桥面体系优化设计研究[J]. 土木工程学报, 2017, 50(11): 87.
    [15] 陈开利, 余天庆, 习刚. 混合梁斜拉桥的发展与展望[J]. 桥梁建设, 2005(2): 1.
    [16] 吴毅斌. 混合梁自锚式悬索桥结合部连接件传力机理研究[J]. 中外公路, 2014, 34(4): 196.
    [17] 苏庆田, 秦飞. 新型混合梁桥结构体系及设计参数[J]. 同济大学学报(自然科学版), 2013(6): 799.
    [18] 刘全民, 李小珍, 张迅, 等. 基于车桥耦合的钢?混结合段刚度平顺性分析[J]. 西南交通大学学报, 2013, 48(5): 810.
    [19] 黄彩萍, 张仲先, 陈开利. 混合梁斜拉桥钢混结合段试验与传力机理研究[J]. 华中科技大学学报(自然科学版), 2012(1): 67.
    [20] 李小珍, 肖林, 黄玲, 等. 混合梁斜拉桥钢?混结合段静力行为[J]. 哈尔滨工业大学学报, 2013, 45(6): 75.
    [21] 刘高, 唐亮, 谭皓, 等. 混合梁斜拉桥钢混结合部的合理位置[J]. 公路交通科技, 2010(6): 52.
    [22] 刘玉擎. 混合梁接合部设计技术的发展[J]. 世界桥梁, 2005(4): 9.
    [23] 龚中平, 戴利民, 郑本辉. 椒江二桥主桥方案设计[J]. 公路, 2010(3): 56.
    [24] 王启迪. 正交异性钢桥面板典型疲劳病害评估与预测[D].北京:北京建筑大学,2019.
    [25] YANG Fei, LIU Yuqing, XIN Haohui. Positive bending capacity prediction of composite girders based on elastoplastic cross-sectional analysis[J]. Engineering Structures, 2018, 167 (15): 327.
    [26] YUN X, GARDNER L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36.
    [27] Japan Society of Civil Engineers. Recommendations for design and construction of ultra-high strength fiber reinforced concrete strucures:draft[S]. Tokyo: Japan Society of Civil Engineers, 2004.
    [28] MCS. Ultra-high performance fibre reinforced cement-based composites(UHPFRC)[S]. Lausanne: MCS-EPFL, 2016.
    [29] AFGC. Ultra-high performance fiber-reinforced concretes (Frence)[S]. Paris: AFGC, 2013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戴昌源,邵长宇,苏庆田,陈亮.混合桥面横向连接构造静力性能[J].同济大学学报(自然科学版),2022,50(5):678~689

复制
分享
文章指标
  • 点击次数:145
  • 下载次数: 537
  • HTML阅读次数: 68
  • 引用次数: 0
历史
  • 收稿日期:2021-06-08
  • 在线发布日期: 2022-06-07
文章二维码