时间步长对格子玻尔兹曼法模拟室内气流精度的影响
CSTR:
作者:
作者单位:

华中科技大学 建筑与城市规划学院,湖北 武汉 430074

作者简介:

韩梦涛(1987—),男,副研究员,硕士生导师,工学博士,主要研究方向为建筑与城市风热环境、绿色建筑。E-mail: hanmt@hust.edu.cn

中图分类号:

TU11;TB126

基金项目:

中央高校基本科研业务费专项资金(2021XXJS053)


Effect of Time Steps on Accuracy of Indoor Airflow Simulation Using Lattice Boltzmann Method
Author:
Affiliation:

School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    基于格子玻尔兹曼法的大涡模拟(LBM-LES)是湍流模拟的新方法,但不恰当的时间步长δt可能会影响其计算精度。首先理论总结了δt可能对LBM-LES湍流模拟造成的影响,阐明过大的δt会导致速度场产生压缩性误差,而过小的δt会导致超松弛碰撞产生速度场的数值振荡。其次,通过对等温室内气流案例进行LBM-LES模拟,定量讨论了δt引起的压缩性误差和数值振荡问题。结果表明,δt较大时流场密度变化剧烈,且格子玻尔兹曼单位的马赫数(M)超过0.3的区域中速度场产生了明显的压缩性误差。同时,过小的δt导致平均及脉动风速均产生了数值振荡,这在网格分辨率较高时尤为明显。建议模拟时在确保δt足够小以满足最大风速区域的M<0.3的基础上,尽量增大δt以防止产生数值振荡。

    Abstract:

    Lattice Boltzmann method-based large-eddy simulation (LBM-LES) is a new method to solve turbulence problems in recent decades. However, improper time step settings may affect the simulation accuracy of LBM-LES. This paper first analyzed and summarized the impact of time step δt on the results of LBM-LES,theoretically. An oversized δt will cause compressibility error in the velocity field, while a too small δt can lead to the over-relaxation colliding mode, causing the numerical oscillation of velocity field. Subsequently, LBM-LES simulations of an isothermal indoor airflow case were conducted to discuss these errors quantitatively. The results show that a large δt leads to a sharp density change, and the velocity field in the regions where the Mach number (M) in the lattice Boltzmann unit exceeds 0.3 showing that there are obvious compressibility errors. Meanwhile, a too-small δt causes apparent numerical oscillations of both time-averaged and fluctuating velocities. This phenomenon is more significant when the grid resolution is higher. Therefore,it is suggested that δt should be small enough to ensure M<0.3 in the maximum velocity regions, based on which, a larger δt should be utilized to prevent numerical oscillations.

    参考文献
    [1] ELHADIDI B, KHALIFA H E. Comparison of coarse grid lattice Boltzmann and Navier Stokes for real time flow simulations in rooms[J]. Building Simulation, 2013, 6(2): 183.
    [2] HAN M, OOKA R, KIKUMOTO H. Lattice Boltzmann method-based large-eddy simulation of indoor isothermal airflow[J]. International Journal of Heat and Mass Transfer, 2019, 130: 700.
    [3] 李校, 郑林. 基于格子玻尔兹曼方法的室内颗粒运动模拟[J]. 南京理工大学学报, 2018, 42(5): 591.
    [4] HAN M, OOKA R, KIKUMOTO H. Validation of lattice Boltzmann method-based large-eddy simulation applied to wind flow around single 1:1:2 building model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104277.
    [5] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329.
    [6] 杜晓庆,李俊军,顾明,等.带上水线拉索绕流场的大涡模拟研究[J].同济大学学报(自然科学版),2016,44(8):1153.
    [7] 郜阳,全涌,顾明.二维方柱绕流阻塞效应的大涡模拟[J].同济大学学报(自然科学版),2018,46(8):1018.
    [8] INAMURO T. The Lattice Boltzmann method and its applications for complex flows[J]. Journal of the Society of Powder Technology, 1999, 36(4): 286.
    [9] 韩梦涛. 基于LBM-LES的室外湍流非稳态快速模拟方法的开发[J]. 建筑科学, 2021, 37(10): 200.
    [10] 王立军,吴光强.基于格子Boltzmann方法的液力变矩器导轮流场仿真[J].同济大学学报(自然科学版),2015,43(4):592.
    [11] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511.
    [12] REIDER M B, STERLING J D. Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations[J]. Computers and Fluids, 1995, 24(4): 459.
    [13] HAN M, OOKA R, KIKUMOTO H. Derivation of fluid governing equations from the lattice Boltzmann equation Part 1 Chapman-Enskog expansion of the lattice Boltzmann equation (in Japanese)[C]//Proceeding of the Architectural Research MeetingsKanto Chapter of Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2018:199-202.
    [14] HAN M, OOKA R, KIKUMOTO H. Derivation of fluid governing equations from the lattice Boltzmann equation Part 2 Derivation of the continuity equation and Navier-Stokes equation (in Japanese)[C]//Proceeding of the Architectural Research MeetingsKanto Chapter of Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2018:203-206.
    [15] DONG Y H, SAGAUT P. A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence[J]. Physics of Fluids, 2008, 20(3): 035105.
    [16] SKORDOS P A. Initial and boundary conditions for the lattice Boltzmann method[J]. Physical Review E, 1993, 48(6): 4823.
    [17] KRüGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method: Principles and practice[M]. Cham: Springer International Publishing, 2017.
    [18] LEMAIRE A D, CHEN Q, EWERT M, et al. Room air and contaminant flow, evaluation of computational methods, subtask-1 Summary Report[R]. Delft: International Energy Agency, 1993.
    [19] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99.
    [20] MURAKAMI S. Comparison of various turbulence models applied to a bluff body[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47(C): 21.
    [21] NIELSEN P V, RONG L, OLMEDO I. The IEA Annex 20: Two-dimensional benchmark test for CFD predictions[C]//Clima 201010th REHVA World Congress. Antalie: Turkish Society of HVAC and Sanitary Engineers, 2010: 1-8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩梦涛.时间步长对格子玻尔兹曼法模拟室内气流精度的影响[J].同济大学学报(自然科学版),2022,50(6):793~801

复制
分享
文章指标
  • 点击次数:204
  • 下载次数: 585
  • HTML阅读次数: 292
  • 引用次数: 0
历史
  • 收稿日期:2021-10-15
  • 在线发布日期: 2022-07-04
文章二维码