基于贝叶斯推断的时变流场下污染源反演
CSTR:
作者:
作者单位:

同济大学 土木工程防灾国家重点实验室,上海 200092

作者简介:

朱建杰(1994—),男,博士生,主要研究方向为污染物源参数反演。E-mail: 602123354@qq.com

通讯作者:

周晅毅(1975—),男,教授,工学博士,主要研究方向为风环境、污染物扩散及结构雪荷载。 E-mail: zhouxytj@tongji.edu.cn

中图分类号:

X506

基金项目:

国家自然科学基金面上项目(52078380)


Source Inversion in Time-Variant Flow Field Based on Bayesian Inference
Author:
Affiliation:

State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对5个不同位置的污染源分别做污染物扩散数值模拟,将其计算结果作为测量浓度;利用伴随方程计算时变流场下传感器的模拟浓度。通过测量浓度和模拟浓度构造似然函数,基于贝叶斯推断计算了在时变流场下污染源参数的后验概率。结果表明:污染源参数反演的误差取决于测量浓度与模拟浓度之间的误差。当污染源与传感器的距离较远时,污染源参数的后验概率呈较宽的分布,反演结果具有较大的不确定性;当污染源与传感器距离较近时,反演结果的不确定性得到了显著的降低。此外,还讨论了反演污染源参数时,利用污染物扩散不同阶段的测量数据对反演效果的影响。发现利用扩散初始阶段的测量浓度反演源位置,可以得到比利用稳定阶段数据时更小的反演误差和后验概率标准差,但效果没有得到显著提升。

    Abstract:

    In this paper, a numerical simulation of pollutant diffusion was conducted at five different locations and the results were taken as the measurement. The adjoint equation was used to calculate the simulated concentration of the sensors in time-variant flow field. The likelihood function was constructed by measurement and simulated concentration and the posterior probability of source parameters in time-varying flow field was calculated based on Bayesian inference. The results show that the errors of inversion of source parameters depend on the error between the measurement and the simulated concentration. When the distance between the source and the sensors is greater, the posterior probability of source parameters shows a wider distribution, indicating the larger uncertainty of the inversion result. When the source is closer to the sensors, the uncertainty of the inversion result is significantly reduced. In addition, the influence of measured data at different stages of pollutant diffusion in the process of inversion was also discussed. The inversion errors and the standard deviation of posterior probability are found to be smaller by using the measurement in the initial stage of diffusion than by using the data in the stable stage, but the improvement is not obvious.

    参考文献
    [1] ZHANG T, YIN S, WANG S. An inverse method based on CFD to quantify the temporal release rate of a continuously released pollutant source[J]. Atmospheric Environment, 2013, 77(10): 62.
    [2] WEI Y, ZHOU H, ZHANG T, et al. Inverse identification of multiple temporal sources releasing the same tracer gaseous pollutant[J]. Building and Environment, 2017, 118(1): 184.
    [3] 江思珉, 张亚力, 蔡奕, 等. 单纯形模拟退火算法反演地下水污染源强度[J]. 同济大学学报(自然科学版), 2013, 41(2): 253.
    [4] 曾令杰, 高军. 基于遗传算法的空调风系统突发污染快速溯源[J]. 同济大学学报(自然科学版), 2017, 45(8): 1198.
    [5] KEATS A, YEE A, LIEN F S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007, 41(3): 465.
    [6] GUO S, YANG R, ZHANG H, et al. Source identification for unsteady atmospheric dispersion of hazardous materials using Markov chain Monte Carlo method[J]. International Journal of Heat and Mass Transfer, 2009, 52(3): 3955
    [7] TIKHONOV A N, ARSENIN V Y, Solution of Ill-posed problem[M]. New York: John Wiley and Sons, 1977.
    [8] 郭少冬, 杨锐, 翁文国. 基于MCMC方法的城区有毒气体扩散源反演[J]. 清华大学学报(自然科学版),2009, 49(5): 629.
    [9] 郭少冬, 杨锐, 苏国锋,等. 基于伴随方程和MCMC方法的室内污染源反演模型研究[J]. 应用基础与工程科学学报, 2010, 18(4): 695.
    [10] RAJAONA H, SEPTIER F, ARMAND P, et al. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release[J]. Atmospheric Environment, 2015, 122(10): 748
    [11] XUE F, LI X, ZHANG W. Bayesian identification of a single tracer source in an urban-like environment using a deterministic approach[J]. Atmospheric Environment, 2017, 164(5): 128.
    [12] XUE F, LI X, OOKA R. Turbulent Schmidt number for source term estimation using Bayesian inference[J]. Building and Environment, 2017, 125(9): 414.
    [13] XUE F, KIKUMOTO H, LI X, et al. Bayesian source term estimation of atmospheric releases in urban areas using LES approach[J]. Journal of Hazardous Materials, 2018, 349(1): 68.
    [14] CHOW F K. Bayesian inference and Markov chain Monte Carlo sampling to reconstruct a contaminant source on a continental scale[J]. Journal of Applied Meteorology and Climatology, 2007, 47(1): 2600
    [15] SENOCAK I, HENGARTNER N W, SHORT M B, et al. Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference[J]. Atmospheric Environment, 2008, 42(5): 7718.
    [16] WADE D, SENOCAK I. Stochastic reconstruction of multiple source atmospheric contaminant dispersion events[J]. Atmospheric Environment, 2013, 74(2): 45.
    [17] TOMINAGA Y, MOCHIDA A, YOSHIE R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(2): 1749.
    [18] KIM J J, BAIK J J. Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1): 309.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱建杰,周晅毅,顾明.基于贝叶斯推断的时变流场下污染源反演[J].同济大学学报(自然科学版),2022,50(6):802~811

复制
分享
文章指标
  • 点击次数:183
  • 下载次数: 673
  • HTML阅读次数: 282
  • 引用次数: 0
历史
  • 收稿日期:2021-10-15
  • 在线发布日期: 2022-07-04
文章二维码