基于Nelder-Mead算法的机器人主动嗅觉室内时变污染源定位
作者:
作者单位:

同济大学 土木工程防灾国家重点实验室,上海 200092

作者简介:

周晅毅(1975—),男,教授,工学博士,主要研究方向为风环境、污染物扩散及结构雪荷载。 E-mail: zhouxytj@tongji.edu.cn

通讯作者:

王富玉(1996—),男,博士生,主要研究方向为源参数反演。E-mail: wfy@tongji.edu.cn

中图分类号:

X506

基金项目:

国家自然科学基金面上项目(52078380)


Locating Indoor Time-Variant Contaminant Sources Based on Nelder-Mead Algorithm Using Robot Active Olfaction Method
Author:
Affiliation:

State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将Nelder-Mead(NM)算法与机器人主动嗅觉相结合,对室内衰减型和周期型两种时变污染源开展定位研究。首先通过计算流体动力学(CFD)模拟得到这两种时变污染源的浓度场,然后利用NM算法对其定位。结果表明,两种时变污染源的定位成功率均在80 %以上。对机器人数量、响应时间和最大搜索步数这三个影响因素进行讨论,通过分析发现当室内面积为100 m2左右时,机器人数量为5个、响应时间为2 s、最大搜索步数为50步定位效果最好。

    Abstract:

    In this paper, the Nelder-Mead (NM) algorithm was combined with the robot active olfaction method to locate two types of time-variant contaminant sources, which are attenuated and periodic sources, respectively. First, the concentration fields of the contaminant sources were simulated through computational fluid dynamics (CFD) simulation. Then, the time-variant contaminant sources were located using the NM algorithm. The results show that the success rates of locating the two time-variant contaminant sources are both above 80 %. Three influencing factors such as the number of robots, robot response time, and the maximum number of robot search steps were discussed. The analysis indicates that in the case of 100 m2 indoor space, time-variant sources can be best located when 5 robots are working on the site with a setting of 2 seconds in robot response and a maximum number of 50 robot search steps.

    参考文献
    相似文献
    引证文献
引用本文

周晅毅,王富玉,杨流阔,顾明.基于Nelder-Mead算法的机器人主动嗅觉室内时变污染源定位[J].同济大学学报(自然科学版),2022,50(6):812~820

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-04
  • 出版日期:
文章二维码