广东阳江海洋砂性土小应变硬化土模型参数的试验研究
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院, 上海 200092;2.同济大学 岩土与地下工程教育部重点实验室, 上海 200092;3.上海勘测设计研究院有限公司, 上海 200434

作者简介:

袁聚云(1960—),男,教授,博士生导师,工学博士,主要研究方向为岩土工程。 E-mail: yuanjuyun@tongji.edu.cn

通讯作者:

顾晓强(1981—),男,教授,博士生导师,工学博士,主要研究方向为土动力学及宏微观土力学。 E-mail: guxiaoqiang@tongji.edu.cn

中图分类号:

TU41

基金项目:

国家自然科学基金项目(51822809)


Experimental Study on Parameters of Hardening Soil Model with Small Strain Stiffness for Marine Sand in Yangjiang, Guangdong
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China;3.Shanghai Investigation, Design and Research Institute Co., Ltd., Shanghai 200434, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海上风机结构在风、浪、流等复杂循环荷载作用下需严格控制其振动频率和基础变形,设计时需考虑土体的小应变模量特性。使用固结仪、GDS应力路径三轴仪和弯曲元设备波速测试,获得了广东阳江典型海洋砂土的小应变硬化土模型(HSS)的主要参数,包括砂土的有效应力强度指标和刚度参数等。结果表明:海洋砂土刚度参数G0refE50refEoedrefEurref之间存在倍数关系,可通过经验公式相互转换;天然海洋砂土的小应变剪切模量G0明显低于已有研究中的洁净砂土,最终给出了广东阳江地区海洋砂性土HSS模型参数的取值建议。

    Abstract:

    The resonant frequency and the tilt of the offshore wind turbine foundation should be strictly controlled at natural cyclic load such as wind, wave and current, resulting in the fact that the characteristics of small strain modulus of soil should be considered in the design. The hardening soil model with small strain stiffness (HSS) parameters of typical marine sand in Yangjiang, Guangdong, including the effective stress strength parameters and stiffness parameters, were obtained by using conventional oedometer, GDS triaxial and bender elements. The relationships among stiffness parameters of marine sand were also analyzed. It is found that the measured small strain shear modulus G0 is much smaller than the predictions made by empirical equations based on clean sands. The method to predict the HSS model parameters of marine sands in this area are furthermore suggested.

    参考文献
    [1] 郭玉樹, 亚克慕斯·马丁, 阿布达雷赫曼·哈里. 用循环三轴试验分析海上风力发电机单桩基础侧向位移[J]. 岩土工程学报, 2009, 31(11): 1729.
    [2] BENZ T. Small strain stiffness of soils and its numerical consequences [D]. Stuttgart: University of Stuttgart, 2007.
    [3] 周恩平. 考虑小应变的硬化土本构模型在基坑变形分析中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [4] 陈磊. 小应变本构模型在留有反压土的基坑开挖变形中的应用[D]. 天津: 天津大学, 2014.
    [5] 尹骥. 小应变硬化土模型在上海地区深基坑工程中的应用[J]. 岩土工程学报, 2010, 32(S1): 166.
    [6] 张雪婵. 软土地基狭长型深基坑性状分析[D]. 杭州: 浙江大学, 2012.
    [7] 木林隆, 黄茂松, 吴世明. 基于反分析法的基坑开挖引起的土体位移分析[J]. 岩土工程学报, 2012, 34(S1): 60.
    [8] 褚峰, 李永盛, 梁发云, 等. 土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J]. 岩石力学与工程学报, 2010, 29(S1): 3184.
    [9] 王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8): 2283.
    [10] 顾晓强, 陆路通, 李雄威, 等. 土体小应变刚度特性的试验研究[J]. 同济大学学报(自然科学版), 2018, 46(3): 312.
    [11] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2): 269.
    [12] BRINKGREVE R B J, BROERE W. Plaxis material models manual [R]. Delft: Delft University of Technology, 2006.
    [13] 罗敏敏, 陈赟, 周江. 小应变土体硬化模型参数取值研究现状与展望[J]. 工业建筑, 2021, 51(4): 172.
    [14] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833.
    [15] GAO D Z, WEI D D, HU Z X. Geotechnical properties of Shanghai soils and engineering applications [M]// Marine Geotechnology and Nearshore/offshore Structures. Philadelphia: ASTM, 1986: 161 - 178.
    [16] BOLTON M D. The strength and dilatancy of sands [J]. Géotechnique, 1986, 36(1): 65.
    [17] JANBU J. Soil compressibility as determined by oedometer and triaxial tests [C]//Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering. Wiesbaden: [s. n.], 1963, 1:19 - 25.
    [18] GU X Q, YANG J, HUANG M S, et al. Bender element tests in dry and saturated sand: Signal interpretation and result comparison [J]. Soils and Foundations, 2015, 55(5): 951.
    [19] KUMAR J, MADHUSUDHAN B N. Effect of relative density and confining pressure on Poisson ratio from bender and extender elements tests [J]. Geotechnique, 2010, 60(7), 561.
    [20] GU X Q, YANG J, HUANG M S. Laboratory measurements of small strain properties of dry sands by bender element [J]. Soils and Foundations, 2013, 53(5), 735.
    [21] SUWAL L P, KUWANO R. Statically and dynamically measured Poisson′s ratio of granular soils on triaxial laboratory specimens [J]. Geotechnical Testing Journal, 2013, 36(4), 493.
    [22] IWASAKI T, TATSUOKA F. Effects of grain size and grading on dynamic shear moduli of sands [J]. Soils and Foundations, 1977, 17: 20.
    [23] HARDIN B O, RICHART F E. Elastic wave velocities in granular soils [J]. Soil Mechanics and Foundations Division, 1963, 89: 33.
    [24] MENQ F Y. Dynamic properties of sandy and gravelly soils [D]. Austin: The University of Texas at Austin, 2003.
    [25] WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus G(max) [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404.
    [26] SENETAKIS K, ANASTASIADIS A, PITILAKIS K. The small-strain shear modulus and damping ratio of quartz and volcanic sands [J]. Geotechnical Testing Journal, 2012, 35(6), 964.
    [27] SCHANZ T, VERMEER P A. On the stiffness of sands [M]//Pre-failure deformation behaviour of geomaterials. Stuttgart:Thomas Telford Publishing, 1998: 383 - 387.
    [28] 赵保, 田雷, 赵伟阳, 等. 杭州富水粉砂水泥土HSS模型参数实验研究[J]. 浙江工业大学学报, 2021, 49(1): 53.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁聚云,陈玺元,顾晓强,林毅峰,校建东,吴彩虹.广东阳江海洋砂性土小应变硬化土模型参数的试验研究[J].同济大学学报(自然科学版),2022,50(6):852~860

复制
分享
文章指标
  • 点击次数:180
  • 下载次数: 549
  • HTML阅读次数: 97
  • 引用次数: 0
历史
  • 收稿日期:2021-06-12
  • 在线发布日期: 2022-07-04
文章二维码