面向建筑健康监测的无人机自主巡检与裂缝识别
CSTR:
作者:
作者单位:

同济大学 测绘与地理信息学院,上海 200092

作者简介:

刘 春(1973—),男,教授,博士生导师,工学博士,主要研究方向为新型遥感的感知及数据处理。 E-mail: liuchun@tongji.edu.cn

通讯作者:

艾克然木·艾克拜尔(1992—),男,博士生,主要研究方向为无人机遥感系统自主控制。 E-mail: akram@tongji.edu.cn

中图分类号:

P234;TP242.6

基金项目:

国家重点研发计划(2018YFB1305000);国家自然科学基金重点项目(42130106)


UAV Autonomous Inspection and Crack Detection Towards Building Health Monitoring
Author:
Affiliation:

College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    面向建筑健康的高时效监测需求,为提升表面病害视觉检测的自动化水平,提出了场景信息引导的无人机自主巡检任务规划方法。利用场景先验信息,针对建筑结构特征,设计了平行观测和包络观测两种观测模式,实现了狭窄空间中独栋建筑的全覆盖避障巡检,获取了毫米级分辨率的整体建筑观测影像,并对巡检质量的整体评估提出了有效的量化指标。将建筑立面划分为3 720个子区域,利用深度残差网络开展了裂缝识别分类。错分13个子区域,漏分14个子区域,裂缝识别精度高。将裂缝骨架线映射到建筑三维模型,为裂缝形态与建筑整体的一体化表达提供了数据支撑。该研究将高精度三维重建与表面病害识别相结合,为建筑健康一体化监测提供了有效的观测分析手段。

    Abstract:

    Aiming at the demands of time-sensitive building health monitoring to promote the automation level of surface disease visual inspection, scene information guided UAV inspection mission planning was proposed. Based on the scene’s prior information, two observation modes, parallel observation and envelope observation, were designed for the structural characteristics of the building, which realized the full coverage obstacle avoidance inspection of the individual building in the narrow space as well as the observation of whole building with millimeter resolution. Meanwhile, a series of effective quantitative indexes for the overall evaluation of the inspection quality were put forward. The facade of the building was divided into 3 720 subregions. The surface cracks were identified and classified by a deep residual network. The result shows that 13 wrong subregions and 14 missing subregions reflect the high accuracy of crack identification. The crack skeletons are mapped to the reconstructed 3D model, which provides data support for the integrated expression of crack morphology and building information. This study combines high-precision 3D reconstruction with surface disease recognition, providing a practical observation and analysis method for integrated building health monitoring.

    参考文献
    [1] 上海市住房和城乡建设管理委员会, 上海建科集团股份有限公司. 上海市建筑业行业发展报告 [M]. 上海: 上海人民出版社, 2021.
    [2] THACKER S, ADSHEAD D, FAY M, et al. Infrastructure for sustainable development [J]. Nature Sustainability, 2019, 2(4): 324.
    [3] KARBHARI V M, ANSARI F. Structural health monitoring of civil infrastructure systems [M]. Cambridge: Woodhead Publishing Limited, 2009.
    [4] NAPOLITANO R, GLISIC B. Methodology for diagnosing crack patterns in masonry structures using photogrammetry and distinct element modeling [J]. Engineering Structures, 2019, 181: 519.
    [5] XIONG H B, CAO J X, ZHANG F L, et al. Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building [J]. Smart Structures and Systems, 2019, 23(3): 295.
    [6] DAS S, SAHA P, PATRO S K. Vibration-based damage detection techniques used for health monitoring of structures: a review [J]. Journal of Civil Structural Health Monitoring, 2016, 6(3): 477.
    [7] KIM M K, WANG Q, LI H. Non-contact sensing based geometric quality assessment of buildings and civil structures: A review [J]. Automation in Construction, 2019, 100: 163.
    [8] MASRI Y EL , RAKHA T. A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections [J]. Construction and Building Materials, 2020, 265: 120542.
    [9] BAUER E, PAVON E, BARREIRA E, et al. Analysis of building facade defects using infrared thermography: Laboratory studies [J]. Journal of Building Engineering, 2016(6): 93.
    [10] MOSTAFA K, HEGAZY T. Review of image-based analysis and applications in construction [J]. Automation in Construction, 2021, 122: 103516.
    [11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]//3rd International Conference on Learning RepresentationsICLR 2015. San Diego:ICLR, 2015: 1-14.
    [12] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1-9.
    [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
    [14] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640.
    [15] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386.
    [16] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer Cham, 2015: 234-241.
    [17] KHALLAF R, KHALLAF M. Classification and analysis of deep learning applications in construction: A systematic literature review [J]. Automation in Construction, 2021, 129: 103760.
    [18] DONG C-Z, CATBAS F N. A review of computer vision-based structural health monitoring at local and global levels [J]. Structural Health Monitoring, 2020, 20(2): 692.
    [19] SEO J, DUQUE L, WACKER J. Drone-enabled bridge inspection methodology and application [J]. Automation in Construction, 2018, 94: 112.
    [20] VARBLA S, ELLMANN A, PUUST R. Centimetre-range deformations of built environment revealed by drone-based photogrammetry [J]. Automation in Construction, 2021, 128: 103787.
    [21] ZHAO S Z, KANG F, LI J J, et al. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction [J]. Automation in Construction, 2021, 130: 103832.
    [22] RAKHA T, GORODETSKY A. Review of unmanned aerial system (uas) applications in the built environment: towards automated building inspection procedures using drones [J]. Automation in Construction, 2018, 93: 252.
    [23] CABREIRA T, BRISOLARA L, FERREIRA P R. Survey on coverage path planning with unmanned aerial vehicles [J]. Drones, 2019, 3(1): 4.
    [24] LORENSEN W E, CLINE H E. Marching cubes: A high resolution 3D surface construction algorithm [J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163.
    [25] ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns [J]. Communications of the ACM, 1984, 27(3): 236.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘春,艾克然木·艾克拜尔,蔡天池.面向建筑健康监测的无人机自主巡检与裂缝识别[J].同济大学学报(自然科学版),2022,50(7):921~932

复制
分享
文章指标
  • 点击次数:1356
  • 下载次数: 1281
  • HTML阅读次数: 211
  • 引用次数: 0
历史
  • 收稿日期:2022-04-17
  • 在线发布日期: 2022-07-22
文章二维码