基于林地激光点云的树木胸径自动提取方法
CSTR:
作者:
作者单位:

同济大学 测绘与地理信息学院,上海 200092

作者简介:

吴杭彬(1983—),男,副教授,博士生导师,工学博士,主要研究方向为激光扫描数据处理。 E-mail: hb@tongji.edu.cn

通讯作者:

王旭飞(1996—),男,硕士生,主要研究方向为点云数据处理。E-mail: tjwangxufei@tongji.edu.cn

中图分类号:

TN958.98

基金项目:

国家自然科学基金(42130106)


Tree Diameter at Breast Height Automatic Estimation Based on Forest Terrestrial Laser Scanning
Author:
Affiliation:

College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于随机RANSAC模型的树木胸径自动提取算法。首先,采用布料模拟滤波(CSF)算法对林地点云数据进行滤波,获取树木、地面数据与数字地面模型(DEM)并提取树木胸径处点云,然后进行欧式距离聚类,最后基于随机random sample consensus (RANSAC)模型拟合树木模型,实现自动化的树木胸径提取。使用上海市青浦区某区域两林区样地的地面激光点云数据对该算法进行验证,与实际人工测量树木胸径的平均偏差分别为0.79cm和0.52cm。实验对比结果表明,该算法在精度与时间性能上均优于基于Hough变换的算法与基于最小二乘的算法。

    Abstract:

    This paper presents a tree diameter at breast height (DBH)estimation algorithm using terrestrial laser scanning (TLS) based on the randomized random sample consensus (RANSAC) model. First, the forest cloud data were filtered by the cloth simulation filtering (CSF) algorithm. Digital elevation model (DEM) and the point cloud at the DBH of the tree were extracted. Then, Euclidean distance clustering was performed. Finally, the tree model was fitted on the basis of the randomized RANSAC model. The algorithm was verified on laser point cloud data from two sample plots in Qingpu District, Shanghai. The average biases from the actual diameter of trees were 0.79 cm and 0.52 cm, respectively. Experiment results show that the algorithm is better than those based on Hough transform or the least-squares in terms of the accuracy and running time.

    参考文献
    [1] 郑似青,熊伟,方陆明,等.立木胸径近真值测量与计算模型的研究[J].西北林学院学报,2021,36(5):125.
    [2] 黄晓东,冯仲科,解明星,等.自动测量胸径和树高便携设备的研制与测量精度分析[J].农业工程学报,2015,31(18):92.
    [3] 侯鑫新,谭月胜,钱桦,等.一种基于单CCD与经纬仪的树木胸径测量方法[J].计算机应用研究,2014,31(4):1225.
    [4] 于东海,冯仲科,曹忠,等.全站仪测量立木胸径树高及材积的误差分析[J].农业工程学报,2016,32(17):160.
    [5] 刘金成,黄晓东,杨立岩,等.基于CCD超站仪的森林样地建立与精测方法研究[J].农业机械学报,2016,47(11):316.
    [6] CALDERS K, ADAMS J, ARMSTON J, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon[J]. Remote Sensing of Environment, 2020, 251: 112102.
    [7] DISNEY M. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees[J]. New Phytologist, 2019, 222(4): 1736.
    [8] KORPELA I, HOVI A, MORSDORF F. Understory trees in airborne LiDAR data—Selective mapping due to transmission losses and echo-triggering mechanisms[J]. Remote Sensing of Environment, 2012, 119: 92.
    [9] LIANG X, LITKEY P, HYYPPA J, et al. Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(2): 661.
    [10] 刘鲁霞,庞勇,李增元.基于地基激光雷达的亚热带森林单木胸径与树高提取[J].林业科学,2016,52(2):26.
    [11] CALDERS K, NEWNHAM G, BURT A, et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning[J]. Methods in Ecology and Evolution, 2015, 6(2): 198.
    [12] TANSEY K, SSLMES N, ANSTEE A, et al. Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data[J]. International Journal of Remote Sensing, 2009, 30(19): 5195.
    [13] OLOFSSON K, HOLMGREN J, OLSSON H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm[J]. Remote Sensing, 2014, 6(5): 4323.
    [14] ZHANG W, QI J, WAN P, et al. An Easy-to-Use Airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501.
    [15] 张凡,李华山,江涛.基于布模拟算法在LiDAR点云中生成数字高程模型[J].激光与光电子学进展,2020,57(13):114.
    [16] RUSU R B, MEEUSSEN W, CHITTA S, et al. Laser-based perception for door and handle identification[C]//2009 International Conference on Advanced Robotics. Munich: IEEE, 2009: 1-8.
    [17] MATAS J, CHUM O. Randomized RANSAC with Tdd test[J]. Image and Vision Computing, 2004, 22(10): 837.
    [18] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for Point-Cloud Shape Detection[C]//Computer Graphics Forum. Oxford: Blackwell Publishing Ltd, 2007, 26(2): 214-226.
    [19] LIANG X, KANKARE V, HYYPPA J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 63.
    [20] RUSU R B, COUSINS S. 3D is here: Point cloud library (PCL)[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 1-4.
    [21] DAGUM L, MENON R. OpenMP: an industry standard API for shared-memory programming[J]. IEEE Computational Science and Engineering, 1998, 5(1): 46.
    [22] 中华人民共和国国家林业局. 森林资源规划设计调查技术规程: GB/T 26424-2010[S]. 北京: 中国标准出版社, 2010.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴杭彬,王旭飞,刘春.基于林地激光点云的树木胸径自动提取方法[J].同济大学学报(自然科学版),2022,50(7):947~954

复制
分享
文章指标
  • 点击次数:684
  • 下载次数: 822
  • HTML阅读次数: 132
  • 引用次数: 0
历史
  • 收稿日期:2022-03-17
  • 在线发布日期: 2022-07-22
文章二维码