黔南—桂西软玉中锰质“草花”的矿物学特征、成因机理及成矿启示
CSTR:
作者:
作者单位:

1.湖北省文物考古研究院,湖北 武汉 430077;2.同济大学 人文学院,上海 200092;3.同济大学 海洋与地球科学学院,上海 200092;4.同济大学 宝石及工艺材料实验室,上海 200092;5.贵州师范学院 旅游文化学院,贵州 贵阳 550018

作者简介:

钟 倩(1991—),女,馆员,理学博士,主要研究方向为岩石矿物学和玉石器科技考古。 E-mail:zhongqian2012@163.com

通讯作者:

廖宗廷(1962—),男,教授,博士生导师,理学博士,主要研究方向为系统宝石学、中国玉文化。 E-mail: liaozt@tongji.edu.cn

中图分类号:

P575

基金项目:

贵州省地质勘查基金(2016-02)


Mineralogical Characteristics, Formation Mechanism, and Significance of Manganese Dendrites in South Guizhou—West Guangxi Nephrite
Author:
Affiliation:

1.Hubei Provincial Institute of Cultural Relics and Archaeology, Wuhan 430077, China;2.School of Humanities, Tongji University, Shanghai 200092, China;3.School of Ocean and Earth Sciences, Tongji University, Shanghai 200092, China;4.Laboratory of Gem and Technological Materials, Tongji University, Shanghai 200092, China;5.School of Culture and Tourism, Guizhou Education University, Guiyang 550018, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    选取黔南—桂西软玉矿床中的“草花”为研究对象,采用电子探针、激光拉曼光谱、电子顺磁共振谱和扫描电镜及能谱就其物质组成及显微结构进行测试分析,并对成因机理进行探讨。结果表明,“草花”呈(准)二维平面状或三维立体状分布于软玉、透闪石化大理岩、滑石岩、透闪石透辉石岩等多种岩石内,系非平衡、非线性条件下快速生长而成的多枝状聚集分形结构。“草花”主要由钙锰矿和少量水钠锰矿、钡硬锰矿、锰钡矿等锰氧化物组成,并显示由大小均一鳞片?叶片状晶体无序卷曲成层或立体团聚成似“沙漠玫瑰”球体的显微结构。“草花”中的锰主要由滇黔桂盆地内的晚古生代—早中生代含锰岩系提供,软玉的原生孔隙和低围压、应力作用下产生的脆性裂隙为锰质运移、沉淀提供了通道和空间,裂隙两侧矿体可在压应力或热液充填作用下愈合。

    Abstract:

    The compositions and microstructures of dendrites in south Guizhou-west Guangxi nephrite deposits were investigated by electron microprobe (EPMA), laser Raman spectroscopy, electron paramagnetic resonance spectroscopy (EPR), and scanning electron microscope (SEM) equipped with energy disperse spectroscopy (EDS), and the formation mechanism was discussed as well. The result indicates that the dendrites are (quasi) two-dimensionally or three-dimensionally distributed in various rocks such as nephrite, tremolite marble, talc rock as well as tremolite diopside rock, and have essentially multi-branched fractal structures or patterns formed by rapid growth under non-equilibrium and non-linear conditions. They consist of mainly todorokite and minor birnessite, romanechite, hollandite, meanwhile displaying a microstructure of uniformly scaly to leaf-like crystals disorderly curled into layers or three-dimensional aggregated into balls reminiscent of the desert rose stones. Manganese for the dendrite growth were mainly provided by the Late Paleozoic to Early Mesozoic manganese-bearing sedimentations in the Yunnan-Guizhou-Guangxi Basin. The primary porosity and the induced brittle cracks at a low confining pressure and tectonic stress of nephrite could provide channels and spaces for manganese migration and precipitation. The rocks on both sides of the fracture would heal when pressed or hydrothermal filled.

    参考文献
    [1] 刘瑞,秦善,鲁安怀,等.锰氧化物和氢氧化物中的孔道结构矿物及其环境属性[J].矿物岩石,2003,23(4):28.
    [2] CHOPARD B, HERRMANN H J, VICSEK T. Structure and growth mechanism of mineral dendrites[J]. Nature, 1991, 353(6343): 409.
    [3] SWATZLOW C R. Two dimensional dendrites and their origin[J]. American Mineralogist, 1934:403.
    [4] 杨林,王兵,王雷,等. 贵州罗甸玉特征初步研究[J]. 贵州地质,2011,28(4):241.
    [5] 黄勇,郝家栩,白龙,等. 贵州省冗里软玉矿的发现及意义[J]. 岩石矿物学杂志, 2012, 31(4):612.
    [6] 王宾,邵臻宇,廖宗廷,等. 广西大化软玉的宝石矿物学特征[J]. 宝石和宝石学杂志, 2012,14(3):6.
    [7] 张妮,刘自强,林春明,等. 贵州罗甸透闪石质“花斑玉”的致斑物质组成及成因研究[C] //珠宝与科技——中国珠宝首饰学术交流会论文集(2015).北京: 国土资源部珠宝玉石首饰管理中心,2015:245-248.
    [8] YIN Z W, JIANG C, SANTOSH M, et al. Nephrite jade from Guangxi Province, China[J]. Gems & Gemology, 2014, 50(3):228.
    [9] 陈慕雨,兰延,陈志强,等.广西大化“水草花”软玉的宝石学特征[J].宝石和宝石学杂志,2017,19(2):41.
    [10] 卢保奇,亓利剑,夏义本.软玉猫眼的Raman光谱及其与猫眼颜色的关系[J].硅酸盐学报,2007,35(11):1492.
    [11] MCGAVIN D G, PALMER R A, TENNANT W C, et al. Use of ultrasonically modulated electron resonance to study S-state ions in mineral crystals: Mn2+, Fe3+ in tremolite[J]. Physics & Chemistry of Minerals, 1982, 8 (5):200.
    [12] KIM S S, BARGAR J R, NEALSON K H, et al. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides[J]. Astrobiology, 2011, 11(8): 775.
    [13] IVARSSON M, BROMAN C, GUSTAFSSON H, et al. Biogenic Mn-oxides in subseafloor basalts[J]. Plos One, 2015, 10(6):1.
    [14] POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:3447.
    [15] JULIEN C M, MASSOT M, POINSIGNONC C. Lattice vibrations of manganese oxides: part I. Periodic structures[J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2004, 60: 689.
    [16] JULIEN C M, MASSOT M, BADDOUR-HADJEAN R, et al. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics Diffusion & Reactions, 2003, 159(3/4):345.
    [17] MA S B, AHN K Y, LEE E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes[J]. Carbon, 2007, 45(2):375.
    [18] 段鉴书,李艳,许晓明,等. 三斜水钠锰矿层间阳离子交换作用的拉曼谱学[J]. 地球科学, 2018, 43(5):265.
    [19] 汤超,廖宗廷,钟倩,等. 新疆软玉仔料中黑色树枝状物质的拉曼光谱和显微结构特征[J]. 光谱学与光谱分析, 2017,37(2):456.
    [20] 许晓明,李艳,丁竑瑞,等. 3种典型富锰沉积物的形貌学与矿物学特征[J]. 岩石矿物学杂志, 2017,36(6):3.
    [21] HSU Y K, CHEN I C, LIN Y G, et al. Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy[J]. Chemical Communications, 2011, 47(4):1252.
    [22] 汪洋,胡凯.应用激光拉曼光谱特征参数反映有机碳质的成熟度[J].矿物岩石,2002,22(3):57.
    [23] 何谋春,吕新彪,姚书振,等.沉积岩中残留有机质的拉曼光谱特征[J].地质科技情报,2005,24(3):67.
    [24] 赵怀燕,龚爱蓉,殷辉,等. 模拟表生环境水钠锰矿亚结构转化及钙锰矿的形成[J]. 地球科学, 2014, 39(2):227.
    [25] POTTER R M, ROSSMAN G R. Mineralogy of manganese dendrites and coatings[J]. American Mineralogist, 1979, 64:1219.
    [26] XU H F, CHEN T H, KONISHI H. HRTEM investigation of trilling todorokite and nano-phase Mn-oxides in manganese dendrites[J]. American Mineralogist, 2010, 95(4):556.
    [27] MCKENZIE R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese[J]. Mineralogical Magazine, 1971, 38(296):493.
    [28] GOLDEN D C, CHEN C C, DIXON J B. Synthesis of todorokite[J]. Science,1986, 231: 717.
    [29] FLEISCHER M, RICHMOND W E. The manganese oxide minerals, a preliminary report[J]. Economic Geology, 1943, 38(4):269.
    [30] TURNER S, BUSECK P R. Manganese oxide tunnel structures and their intergrowths[J]. Science, 1979, 203(4379):456.
    [31] MCKEOWN D A, POST J E. Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy[J]. American Mineralogist, 2001, 86(5/6):701.
    [32] SARATOVSKY I, WIGHTMAN P G, PASTEN P A. Manganese oxides: parallels between abiotic and biotic structures[J]. Journal of the American Chemical Society, 2006, 128(34): 11188.
    [33] MANDELBROT B. The fractal geometry of nature[M]. NewYork: W H Freeman and Company,1983.
    [34] 王雁,王嵩,邓学能. 南盘江盆地优质沉积锰矿成矿条件和成矿预测[J]. 重庆科技学院学报(自然科学版), 2012,14(6):28.
    [35] STUMM W, MORGAN J J. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural water [M]. 2nd ed. New York: John Wiley and Sons, 1981.
    [36] 谢焱石,谭凯旋,郝涛.构造?流体?成矿作用的分形与混沌动力学[J].大地构造与成矿学,2010,34(3):378.
    [37] 刘劲鸿.石英构造矿物学[J].吉林地质,2001,20(2):29.
    [38] EBROM D A, SAUTHOFF I, TATHAM R H. 裂隙愈合与正应力[C]//叶勇,译.美国勘探地球物理学家学会第61届年会论文集.北京: 石油工业出版社,1991:303-307.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钟倩,廖宗廷,周征宇,亓利剑,崔笛,吴穹.黔南—桂西软玉中锰质“草花”的矿物学特征、成因机理及成矿启示[J].同济大学学报(自然科学版),2022,50(8):1115~1126

复制
分享
文章指标
  • 点击次数:631
  • 下载次数: 660
  • HTML阅读次数: 77
  • 引用次数: 0
历史
  • 收稿日期:2022-06-09
  • 在线发布日期: 2022-08-24
文章二维码