基于多元统计分析的P类膜材强度回归分析
作者:
作者单位:

同济大学 土木工程学院,上海200092

作者简介:

杨 彬(1979—), 男,副教授,博士生导师,工学博士,主要研究方向为膜材料力学性能、大跨度结构健康监测、智能建造。E-mail: yangbin@tongji.edu.cn

通讯作者:

吴梦琳(1996—),女,硕士生,主要研究方向为膜材料老化性能。E-mail: 1932522@tongji.edu.cn

中图分类号:

TB43

基金项目:

国家自然科学基金(51778458)


Regression Analysis of Strength of P-Type Membrane Based on Multivariate Statistical Analysis
Author:
Affiliation:

School of Civil Engineering, Tongji University, Shanghai 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    统计了工程中常用的55种P类膜材的规格参数,包括经纬向纱线密度、纤度、克重、厚度等,整理研究了团队累积的膜材力学性能检测数据,得到了涂层织物类膜材的基本力学性能数据库。在此基础上,利用多元统计方法中的经典方法对涂层织物类膜材组织结构参数及其相关试验结果进行分析,包括力学性能指标的相关性分析和力学性能指标的影响因素分析,确定各项参数对膜材强度指标的影响,采用二元线性回归分析方法,分别建立了P类膜材抗拉强度和撕裂强度的回归模型,可用于膜材生产和膜结构设计分析。

    Abstract:

    In this paper, the specification parameters of 55 kinds of coated fabric membrane materials commonly used in engineering at home and abroad are counted, including warp and weft yarn density, fineness, grammage, thickness, etc.. The mechanical test results accumulated were sorted out, and data of the basic mechanical properties of coated fabric membrane materials were obtained. The multivariate statistical method was used to analyze the structure parameters and test results of coated fabric membrane materials, including the correlation analysis of mechanical properties and the influencing factors of mechanical properties. The influence of various parameters on these strength indexes of membrane materials was determined, and the further linear regression analysis was conducted. The regression models of tensile strength and tear strength were established respectively, which could be further applied to membrane material production and membrane structure design.

    参考文献
    相似文献
    引证文献
引用本文

杨彬,吴梦琳,张其林,霍震霆,赏莹莹.基于多元统计分析的P类膜材强度回归分析[J].同济大学学报(自然科学版),2022,50(9):1286~1294

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-29
  • 出版日期:
文章二维码