声子晶体梁边界态的强化学习设计方案与本征模式分析
CSTR:
作者:
作者单位:

同济大学 航空航天与力学学院,上海 200092

作者简介:

金亚斌(1990—),男,研究员,博士生导师,工学博士,主要研究方向为弹性波动力学。 E-mail: 083623jinyabin@tongji.edu.cn。

中图分类号:

O326

基金项目:

国家自然科学基金(11902223)


Reinforcement Learning Design Scheme and Eigenmode Analysis of Edge States of Phononic Beams
Author:
Affiliation:

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    研究周期性阶梯截面声子晶体梁,在理论推导的基础上通过建立强化学习模型框架实现了预期带隙的结构设计功能,提出了从本征模式的角度确定边界态频率的方法,并分别通过对整体结构和半结构的透反射分析验证该方法的准确性。在此基础上,检验了所设计的边界态对弹性波的鲁棒传输特性。提出的强化学习设计方案和本征模式分析边界态的方法使声子晶体梁边界态的设计分析简单易行,有助于推动设计边界态以实现弹性波精准调控的研究。

    Abstract:

    The periodic stepped section phononic crystal beam is studied. Based on the theoretical derivation, the structural design function of the expected band gap is realized by establishing the reinforcement learning model framework. A method to determine the edge state frequencies from the perspective of eigenmode is proposed, and the accuracy of this method is verified by the transmission and reflection analysis of the whole structure and semi structures, based on which, the robust transmission characteristics of the designed edge state for elastic waves are tested. The reinforcement learning design scheme and the eigenmode analysis method of edge states proposed make the design and analysis process of edge states of phononic beams simple, and help promote the research of designing edge states to realize the accurate regulation of elastic waves.

    参考文献
    [1] HASAN M Z, KANE C L. Colloquium: Topological insulators [J]. Reviews of Modern Physics, 2010, 82(4): 3045.
    [2] QI Xiaoliang, ZHANG Shoucheng. Topological insulators and superconductors [J]. Reviews of Modern Physics, 2011, 83(4): 1057.
    [3] CHAUNSALI R, CHEN C W, YANG J. Subwavelength and directional control of flexural waves in zone-folding induced topological plates [J]. Physical Review B, 2018, 97(5): 054307.
    [4] JIN Y B, WANG W, DJAFARI-ROUHANI B. Asymmetric topological state in an elastic beam based on symmetry principle [J]. International Journal of Mechanical Sciences, 2020, 186: 105897.
    [5] WANG W, JIN Y B, WANG W, et al. Robust Fano resonance in a topological mechanical beam [J]. Physical Review B, 2020, 101(2): 024101.
    [6] JIN Y B, TORRENT D, DJAFARI-ROUHANI B. Robustness of conventional and topologically protected edge states in phononic crystal plates [J]. Physical Review B, 2018, 98(5): 054307.
    [7] MA G C, XIAO M, CHAN C T. Topological phases in acoustic and mechanical systems [J]. Nature Reviews Physics, 2019, 1(4): 281.
    [8] ZHANG X J, XIAO M, CHENG Y, et al. Topological sound [J]. Communications Physics, 2018, 1(1): 97.
    [9] GAO W S, XIAO M, CHAN C T, et al. Determination of Zak phase by reflection phase in 1D photonic crystals [J]. Optics Letters, 2015, 40(22): 5259.
    [10] ZHU R, LIU X N, HU G K, et al. A chiral elastic metamaterial beam for broadband vibration suppression [J]. Journal of Sound and Vibration, 2014, 333(10): 2759.
    [11] PAI P F, PENG H, JIANG S Y. Acoustic metamaterial beams based on multi-frequency vibration absorbers [J]. International Journal of Mechanical Sciences, 2014, 79: 195.
    [12] MUHAMMAD, ZHOU W J, LIM C W. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves [J]. International Journal of Mechanical Sciences, 2019, 159: 359.
    [13] HE Liangshu, WEN Zhihui, JIN Yabin, et al. Inverse design of topological metaplates for flexural waves with machine learning [J]. Materials & Design, 2021, 199: 109390.
    [14] JIN Yabin, HE Liangshu, WEN Zhihui, et al. Intelligent on-demand design of phononic metamaterials [J]. Nanophotonics, 2022, 11(3): 439.
    [15] DING Hua, FANG Xinsheng, JIA Bin, et al. Deep learning enables accurate sound redistribution via nonlocal metasurfaces [J]. Physical Review Applied, 2021, 16(6): 064035.
    [16] LIU Fan, JIANG Xihang, WANG Xintao, et al. Machine learning-based design and optimization of curved beams for multistable structures and metamaterials [J]. Extreme Mechanics Letters, 2020, 41: 101002.
    [17] LUO Chengcheng, NING Shaowu, LIU Zhanli, et al. Interactive inverse design of layered phononic crystals based on reinforcement learning [J]. Extreme Mechanics Letters, 2020, 36: 100651.
    [18] WU R T, LIU T W, JAHANSHAHI M R, et al. Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation [J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2399.
    [19] HE Liangshu, GUO Hongwei, JIN Yabin, et al. Machine-learning-driven on-demand design of phononic beams [J]. Science China Physics, Mechanics & Astronomy, 2022, 65(1): 214612.
    [20] KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: A survey [J]. Journal of Artificial Intelligence Research, 1996, 4: 237.
    [21] WATKINS C, DAYAN P. Q-Learning [J]. Machine Learning, 1992, 8: 279.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金亚斌,何良书.声子晶体梁边界态的强化学习设计方案与本征模式分析[J].同济大学学报(自然科学版),2022,50(11):1539~1547

复制
分享
文章指标
  • 点击次数:833
  • 下载次数: 512
  • HTML阅读次数: 112
  • 引用次数: 0
历史
  • 收稿日期:2022-06-18
  • 在线发布日期: 2022-11-23
文章二维码