基于半解析有限元法的多层复合环面周向导波计算
CSTR:
作者:
作者单位:

1.北京航空航天大学,宇航学院,北京 100191;2.新加坡科技研究局,先进再制造和技术中心,新加坡 637143;3.中国航发商用航空发动机有限责任公司,先进技术研究部,上海 200241

作者简介:

余旭东(1990—),男,副教授,博士生导师,工学博士,主要研究方向为超声学、超声无损检测、智能材料与结构。

通讯作者:

余旭东(1990—),E-mail: yxudong@buaa.edu.cn

中图分类号:

O426.2

基金项目:

国家自然科学基金项目(12004026);中国科协青年人才托举工程项目(2020QNRC002);中央高校基本科研业务费专项资金资助。


Computation of Circumferential Guided Ultrasonic Waves in Multilayered Composite Annuli Using Semi-Analytical Finite Element Method
Author:
Affiliation:

1.School of Astronautics, Beihang University, Beijing 100191, China;2.Advanced Remanufacturing and Technology Centre, Singapore 637143, Singapore;3.Aero Engine Corporation of China, Commercial Aircraft Engine Co. Ltd., Shanghai 200241, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    周向超声导波在多层复合圆管的快速缺陷检测与定量材料表征方面具有优秀的应用潜力,结合传感器网络技术,可构建智能材料与结构。精确计算周向导波的频散特性是实现上述目标的关键。传统的频散曲线求解方法大多只适用于各向同性介质且单层环面的情形,而对于工程结构中多层复合圆管则难以甚至无法求解。从弹性波动理论出发,结合COMSOL Multiphysics商用分析平台,发展了半解析有限元(SAFE)方法的计算框架,实现了对周向导波频散关系的精确求解,并在两种典型工业复合圆管结构中得到应用验证。研究表明,所提出的方法可以计算任意材料属性、任意层数以及任意环向截面形状的复合圆管中周向导波的频散曲线,具有重要的工程应用价值。

    Abstract:

    Circumferential ultrasonic guided waves feature the excellent potential of rapid screening and characterizing multilayered composite cylindrical structures, whilst the key to achieving these is to extract their dispersion relations. The traditional approaches for solving dispersion equations are only applicable for isotropic single-layer annulus, which however, are difficult or even impossible to solve guided waves in anisotropic multilayered annuli. This paper develops a semi-analytical finite element (SAFE) approach to compute circumferential guided waves based on elastodynamics, via COMSOL Multiphysics coefficient PDE(partial differential equation) platform. The method and associated results are cross validated by the dispersion curves reported in the literature, and are then applied to two typical engineering cylindrical structures. The proposed approach has manifested itself by extendable applications in industry, as it potentially allows for the computation of circumferential guided waves in multilayered composite annuli with arbitrary material properties, arbitrary number of layers, and arbitrary circumferential cross-sectional shapes.

    参考文献
    [1] KUNTE M V, SARKAR A, SONTI V R. Generalized asymptotic expansions for the wavenumbers in infinite flexible in vacuo orthotropic cylindrical shells [J]. Journal of Sound and Vibration, 2011, 330(23): 5628.
    [2] AULD B A. Acoustic fields and waves in solids[M]. 2nd ed. Malabar, Florida: Krieger Publishing Company, 1990.
    [3] LOVE A E H. Some problems of geodynamics [J]. Nature, 1912, 89: 471.
    [4] CHIMENTI D E. Guided waves in plates and their use in materials characterization [J]. Applied Mechanical Review, 1997, 50(5): 247.
    [5] CHREE C. The equations on an isotropic elastic solid in polar and cylindrical coordinates, their solutions, and applications [J]. Transactions of the Cambridge Philosophical Society,1889, 14:250.
    [6] CAWLEY P. Practical long range guided wave inspection-applications to pipes and rail [J]. Materials Evaluation, 2003, 61(1): 66.
    [7] ALLEYNE D N, PAVLAKOVIC B, LOWE M J S, et al. Rapid, long range inspection of chemical plant pipework using guided waves[J]. AIP Conference Proceedings, 2001, 557: 180.
    [8] 李子明, 何存富, 刘增华, 等. 管道周向导波检测技术研究进展及展望 [J]. 北京工业大学学报, 2018, 44(5): 641.
    [9] VIKTOROV I A. Rayleigh and lamb waves, physical theory and applications [M]. New York: Plenum Press, 1967.
    [10] LIU Guoli, QU Jianmin. Guided circumferential waves in a circular annulus [J]. Journal of Applied Mechanics,1998, 65(2): 424.
    [11] ZHAO X L, ROSE J L. Guided circumferential shear horizontal waves in an isotropic hollow cylinder [J]. Journal of the Acoustical Society of America, 2004, 115:1912.
    [12] ROSE J L. Ultrasonic guided waves in solid media [M]. Cambridge, United Kingdom: Cambridge university press, 2014.
    [13] GRIDIN D, CRASTER R V, FONG J, et al. The high-frequency asymptotic analysis of guided waves in a circular elastic annulus [J]. Wave Motion, 2003, 38: 67.
    [14] LOWE M J S. Matrix techniques for modeling ultrasonic waves in multilayered media [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 525.
    [15] TOWFIGHI S, KUNDU T, EHSANI M. Elastic wave propagation in circumferential direction in anisotropic cylindrical curved plates [J]. Journal of Applied Mechanics, 2002, 69: 283.
    [16] YU Jiangong, WU Bin, HE Cunfu. Guided circumferential waves in orthotropic cylindrical curved plate and the mode conversion by the end-reflection [J]. Applied Acoustics, 2007, 68 (5): 594.
    [17] LUGOVTSOVA J, BULLING J, BOLLER C, et al. Analysis of guided wave propagation in a multi-layered structure in view of structural health monitoring [J]. Applied Science, 2019, 9(21): 4600.
    [18] LIN Jinyun, LI Jian, JIANG Can, et al. Theoretical and experimental investigation of circumferential guided waves in orthotropic annuli [J]. Ultrasonics, 2022, 123: 106715.
    [19] LIU Y J, HAN Q, LIANG Y J, et al. Numerical investigation of dispersive behaviors for helical thread waveguides using the semi-analytical isogeometric analysis method [J]. Ultrasonics, 2018, 83: 126.
    [20] VAN Velsor J K. Circumferential guided waves in elastic and viscoelastic multilayered annuli [D]. Ann Arbor: The Pennsylvania State University, 2009.
    [21] MATUSZYK P J. Modeling of guided circumferential SH and Lamb-type waves in open waveguides with semi-analytical finite element and perfectly matched layer method [J]. Journal of Sound and Vibration, 2017, 386: 295.
    [22] LIN Z, YU P, XU H. Numerical computation of circumferential waves in cylindrical curved waveguides [J]. International Journal of Computational Methods, 2020, 17(10): 2050001.
    [23] DUAN W, GAN T H. Investigation of guided wave properties of anisotropic composite laminates using a semi-analytical finite element method [J]. Composites Part B: Engineering, 2019, 173: 106898.
    [24] DUAN W, KIRBY R. Guided wave propagation in buried and immersed fluid-filled pipes: Application of the semi analytic finite element method [J]. Computers and Structures, 2019, 212, 236.
    [25] MAZZOTTI M, MINIACI M, BARTOLI I. A numerical method for modeling ultrasonic guided waves in thin-walled waveguides coupled to fluids [J]. Computers and Structures, 2019, 212: 248.
    [26] MUKDADI O M, DESAI Y M, DATTA S K, et al. Elastic guided waves in a layered plate with rectangular cross section [J]. Journal of the Acoustical Society of America, 2002, 112(5): 1766.
    [27] YU Xudong, ZUO Peng, XIAO Jing, et al. Detection of damage in welded joints using high order feature guided ultrasonic waves [J]. Mechanical Systems and Signal Process, 2019, 126: 176.
    [28] ZUO Peng, YU Xudong, FAN Zheng. Acoustoelastic guided waves in waveguides with arbitrary prestress [J]. Journal of Sound and Vibration, 2020, 469: 115113.
    [29] ZUO Peng, YU Xudong, FAN Zheng. Numerical modeling of embedded solid waveguides using SAFE-PML approach using a commercially available finite element package [J]. NDT & E International, 2017, 90: 11.
    [30] ZUO Peng, FAN Zheng. SAFE-PML approach for modal study of waveguides with arbitrary cross sections immersed in inviscid fluid [J]. Journal of Sound and Vibration, 2017, 406(4): 181.
    [31] PREDOI M V, CASTAINGS M, HOSTEN B, et al. Wave propagation along transversely periodic structures [J]. Journal of the Acoustical Society of America, 2007, 121(4): 1935.
    [32] HUTHWAITE P, SEHER M. Robust helical path separation for thickness mapping of pipes by guided wave tomography [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(5): 927.
    [33] RATASSEPP M, RAO J, YU X D, et al. Modeling the effect of anisotropy in ultrasonic-guided wave tomography [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(1): 330.
    [34] UBERALL H, HOSTEN B, DESCHANPS M, et al. Repulsion of phase-velocity dispersion curves and the nature of plate vibrations [J]. Journal of the Acoustical Society of America, 1994, 96(2): 908.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余旭东,秦荣,沈海,左鹏,邵照宇.基于半解析有限元法的多层复合环面周向导波计算[J].同济大学学报(自然科学版),2022,50(11):1567~1577

复制
分享
文章指标
  • 点击次数:760
  • 下载次数: 635
  • HTML阅读次数: 93
  • 引用次数: 0
历史
  • 收稿日期:2022-06-18
  • 在线发布日期: 2022-11-23
文章二维码