考虑主、轮缸液压力差异的制动增强控制
作者:
作者单位:

1.同济大学 汽车学院,上海 201804;2.上海同驭汽车科技有限公司,上海 201806;3.浙江万安科技股份有限公司,浙江 诸暨 311800;4.合众新能源汽车有限公司,浙江 桐乡 314500

作者简介:

史彪飞(1993—),男,工学博士,主要研究方向为汽车线控制动系统及主动安全控制。 E-mail: 1935792849@qq.com

通讯作者:

舒强(1990—),男,工学硕士,主要研究方向为汽车线控底盘系统设计、控制与产业化。 E-mail: shuqiang@tongyuauto.com

中图分类号:

U461.1

基金项目:

国家自然科学基金项目(52002284);上海市科委项目(20511104601);上海汽车工业科技发展基金项目(1734)


Braking Enhancement Control Considering the Difference in Pressure Between the Master Cylinder and the Wheel Cylinder
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201804, China;2.Shanghai Tongyu Automotive Technology Co.,Ltd., Shanghai 201806, China;3.Zhejiang Vie Science and Technology Co.,Ltd., Zhuji 311800, Zhejiang, China;4.Hozon New Energy Automobile Co., Ltd., Tongxiang 314500, Zhejiang, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有电子液压制动系统(EHB)在常规制动工况下均是以主缸液压力传感器为反馈进行液压力控制,而忽略了主、轮缸液压力的差异性对制动控制带来的影响。针对此,首先通过电磁阀测试台架测试了液压控制单元(HCU)增压阀在全开工况下的正、反向的压差流量特性。之后,通过制动测试台架测试了轮缸压力体积(PV)特性,建立了非极限工况下的主、轮缸液压力的动态模型,并通过试验数据验证了模型的准确性。将由上述模型估计的轮缸液压力作为反馈,替换原始的主缸液压力传感器信号,引入到EHB的液压力控制算法中,而并不改变原控制算法。基于经典控制理论,分析了该新控制系统的快速性和稳定性。最后进行了液压力控制的实车试验,结果表明,在相同的目标阶跃工况下,相比于主缸液压力反馈控制,所提出的新控制系统可将轮缸液压力及制动减速度的响应速度提高12 %左右,从而缩短紧急制动工况下的制动距离。此外,由于估算的轮缸液压力比主缸液压力更加平稳且没有超调,新控制系统在快速建压过程中运行更加平稳,显著提升噪声、振动与声振粗糙度(NVH)性能。最后,多工况下的实车试验表明新控制系统是稳定的。

    Abstract:

    Nowadays, the electro-hydraulic brake system (EHB) adopts the master cylinder pressure sensor as feedback for pressure control under normal braking conditions, while ignoring the difference in pressure between the master and the wheel cylinder. Therefore, first, through the solenoid valve test bench, the forward and reverse throttling characteristic of the inlet valve of the hydraulic control unit (HCU) in the fully open state is tested. After that, the pressure volume (PV) characteristic of the wheel cylinder is tested by the brake test bench. Based on the above, a dynamic model between the pressure of the master cylinder and the wheel cylinder under non-limiting conditions is established, and the accuracy of the model is verified by real test data. The wheel cylinder pressure estimated by the above model rather than the master cylinder pressure sensor is adopted as the feedback and introduced into the master cylinder pressure control algorithm of the EHB without changing the original control algorithm. Based on the classical control theory, the rapidity and stability of the new control system is analyzed. Finally, real vehicle test of pressure control is conducted. The results show that under the same target step condition, the response speed of the wheel cylinder pressure and vehicle deceleration is increased by about 12 %, thereby shortening the braking distance under emergency braking conditions. In addition, since the estimated wheel cylinder pressure is smoother than that of the master cylinder without overshoot, the new control system runs more smoothly during the rapid pressurization process, significantly improving the noise, vibration, and harshness (NVH) performance. Finally, real vehicle tests under multiple conditions indicate that the new control system is stable.

    参考文献
    相似文献
    引证文献
引用本文

史彪飞,熊璐,刘洋,舒强,冷搏,陈锋,傅直全,姚雪平.考虑主、轮缸液压力差异的制动增强控制[J].同济大学学报(自然科学版),2022,50(11):1667~1675

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-23
  • 出版日期:
文章二维码