考虑网联汽车信息安全的交通流短时预测方法
CSTR:
作者:
作者单位:

1.北方工业大学 智能交通技术交通运输行业重点实验室,北京 100144;2.北方工业大学 城市道路交通智能控制技术北京市重点实验室,北京 100144;3.中信科智联科技有限公司,北京 100029

作者简介:

王庞伟(1982—),男,副教授,工学博士,主要研究方向为车路协同与智能驾驶。 E-mail: wpw@ncut.edu.cn

中图分类号:

U491.1+4

基金项目:

北京市自然科学基金(4212034);国家重点研发计划(2018YFB1600500);智能交通技术交通运输行业重点实验室开放基金(F20211749)。


Short-term Traffic Flow Prediction Method Considering Information Security for Connected Vehicles
Author:
Affiliation:

1.Key Laboratory of Transport Industry of Intelligent Transportation Systems, North China University of Technology, Beijing 100144, China;2.Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China;3.CICT Connected and Intelligent Technologies Co. Ltd., Beijing 100029, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对智能网联汽车因网络攻击或干扰造成的信息安全及数据缺失问题,提出一种基于数据补全的交通流状态短时预测方法。首先,基于边缘计算任务卸载模型,对智能网联汽车V2X通信过程的异常数据动态辨识;其次,提出一种具有数据补全机制的图嵌入长短期神经网络模型,实现网联汽车缺失数据补全;再次,通过补全后的完整数据集构建神经网络模型,完成短时交通流状态预测;最后,选取北京市典型路段进行实验验证。结果表明,该模型应用后交通流状态短时预测效果显著提高,与其他方法相比预测误差最大降低87.4%,预测效果与实际交通流状态相比准确率达到95%,为智能网联环境下车辆信息安全与交通资源动态优化提供理论支持和技术方案。

    Abstract:

    Aiming at the information security and data missing caused by network attacks or interference for ICVs (Intelligent Connected Vehicle), this paper proposes a short-term prediction method of traffic flow state based on data imputation. Firstly, based on the edge computing task offloading model, the abnormal data of the V2X (vehicle to everything, V2X) communication process of ICVs is identified dynamically. Secondly, a graph embedding (GE) with data imputation mechanism and long short-term memory (LSTM) neural network model is proposed to impute the missing data. Thirdly, the neural network model is established based on the complete data sets to realize the short-term traffic flow state prediction. Finally, by the proposed model applied in Beijing for field test, the final results show that the short-term prediction effect of traffic flow state is significantly improved. In comparison with other methods, the prediction error is reduced by 87.4% and the accuracy of the prediction effect is 95% according to the actual traffic flow state, which provides a novel theoretical support and technical solution for vehicular information security and dynamic optimization of traffic resources in the intelligent networked environment.

    参考文献
    [1] 鹿应荣,许晓彤,丁川,等. 车联网环境下信号交叉口车速控制策略[J]. 交通运输系统工程与信息, 2018, 18(1): 50.LU Yingrong, XU Xiaotong, DING Chuan, et al. A speed control strategy at signalized intersection under connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 50.
    [2] CHEN S, ZHU X, ZHANG H, et al. Efficient privacy preserving data collection and computation offloading for fog-assisted Iot[J]. IEEE Transactions on Sustainable Computing, 2020, 5(4): 526.
    [3] PEI X, YU H, WANG X, et al. Noma-based pervasive edge computing: Secure power allocation for IoV[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 5021.
    [4] USMAN M, JOLFAEI A, JAN M A. Rasec: an intelligent framework for reliable and secure multilevel edge computing in industrial environments[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 4543.
    [5] HAN X, TIAN D, SHENG Z, et al. Reliability-aware joint optimization for cooperative vehicular communication and computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 5437.
    [6] GROVER H, ALLADI T, CHAMOLA V, et al. Edge computing and deep learning enabled secure multitier network for internet of vehicles[J]. IEEE Internet of Things Journal, 2021, 8(9): 14787.
    [7] WU R, HAMSHAW S D, YANG L, et al. Data imputation for multivariate time series sensor data with large gaps of missing data[J]. IEEE Sensors Journal, 2022, 22(11):10671.
    [8] CUI Z, KE R, PU Z, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C: Emerging Technologies, 2020, 118(1):102.
    [9] LEE S Y, CONNERTON T P, LEE Y W, et al. Semi-GAN: an improved GAN-based missing data imputation method for the semiconductor industry[J]. IEEE Access, 2022, 10(1):72328.
    [10] LI Q, TAN H C, WU Y K, et al. Traffic flow prediction with missing data imputed by tensor completion methods[J]. IEEE Access, 2020, 8(2):63188.
    [11] BIERNACKI A. Improving quality of adaptive video by traffic prediction with (f)arima models[J]. Journal of Communications and Networks, 2017, 19(5): 521.
    [12] GUO J H, WILLIAMS B. Real-time short-term traffic speed level forecasting and uncertainty quantification using layered kalman filters[J]. Transportation Research Record Journal of the Transportation Research Board, 2010, 2175(1):28.
    [13] 许岩岩, 翟希, 孔庆杰, 等. 高速路交通流短时预测方法[J]. 交通运输工程学报, 2013, 13(2): 114.XU Yanyan, ZHAI Xi, KONG Qingjie, et al. Short-term prediction method of freeway traffic flow[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 114.
    [14] GUO X C, LI Y, YANG J. Proactive traffic responsive control based on state-space neural network and extended kalman filter[J]. Journal of Southeast University, 2010, 26(3): 466.
    [15] 张矢宇, 杨宇昊, 陈尘, 等. 基于回归卡尔曼滤波组合模型的航道整治区域船舶交通流时空预测[J]. 大连海事大学学报, 2021, 47(1): 37.ZHANG Shiyu, YANG Yuhao, CHEN Chen, et al. Spatio-temporal prediction of ship traffic flow in waterway regulation area based on regression kalman filter combination model[J]. Journal of Dalian Maritime University, 2021,47(1): 37.
    [16] TAK S, WOO S, YEO H. Data-driven imputation method for traffic data in sectional units of road links[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1762.
    [17] WU Y K, TAN H C, LI Y, et al. A fused cp factorization method for incomplete tensors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 751.
    [18] BRONSTEIN M M, BRUNA J, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18.
    [19] GROVER A, LESKOBEC J. Node2vec: scalable feature learning for networks [C]//Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining.San Francisco California USA :Association for Computing Machinery,2016,16(8):855-864.
    [20] WEI C C, XU D W, PENG P, et al. GE-GAN: a novel deep learning framework for road traffic state prediction[J]. Transportation Research Part C: Emerging Technologies, 2020, 117(8): 102635.
    [21] XIE Z P, LV W F, et al. Sequential graph neural network for urban road traffic speed prediction[J]. IEEE Access, 2020, 8(5): 63349.
    [22] XU D W, DAI H W, et al. Road traffic state prediction based on a graph embedding recurrent neural network under the scats[J]. Chaos, 2019, 29(10): 103125.
    [23] 朱琳. 城市快速路交通态势评估理论与方法研究[D]. 北京:北京交通大学, 2013.ZHU Lin. Theory and method studies on traffic situation assessment for urban expressways[D]. Beijing: Beijing Jiaotong University, 2013.
    [24] 朱敏. 视频车辆检测器产品的设计与开发[D].杭州:浙江工业大学, 2019.ZHU Min. Design and development of video vehicle detector product[D]. Hangzhou:Zhejiang University of Technology, 2019.
    [25] WANG P, DENG H, ZHANG J, et al. Model predictive control for connected vehicle platoon under switching communication topology[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7):7817.
    [26] 王庞伟, 于洪斌, 张为, 等. 城市车路协同系统下实时交通状态评价方法[J]. 中国公路学报, 2019, 32(6): 176.WANG Pangwei, YU Hongbin, ZHANG Wei, et al. Real-time traffic status evaluation method for urban cooperative vehicle infrastructure system[J]. China Journal of Highway and Transport, 2019, 32(6):176.
    [27] ZHOU J, TIAN D, WANG Y, et al. Reliability-oriented optimization of computation offloading for cooperative vehicle-infrastructure systems[J]. IEEE Signal Processing Letters, 2018, 26(1): 104.
    [28] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194.ZHAO Yangyang, XIA Liang, JIANG Xinguo, et al. Short-term metro passenger flow prediction based on emd-lstm[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (4):194.
    [29] LU W, YI Z, WU R, et al. Traffic speed forecasting for urban roads: a deep ensemble neural network model[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 593(5):126.
    [30] MINH Q T, KAMIOKA E. Traffic state estimation with mobile phones based on the "3r" philosophy[J]. Ieice Trans Communication, 2011, 94(12):3447.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王庞伟,王天任,李振华,刘虓,孙玉兰.考虑网联汽车信息安全的交通流短时预测方法[J].同济大学学报(自然科学版),2022,50(12):1703~1714

复制
分享
文章指标
  • 点击次数:1055
  • 下载次数: 661
  • HTML阅读次数: 86
  • 引用次数: 0
历史
  • 收稿日期:2022-09-08
  • 在线发布日期: 2023-01-03
文章二维码