货车移动遮断影响下的跟驰风险异质性建模
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.昆明理工大学 交通工程学院,云南 昆明 650500

作者简介:

谢世坤(1996—),女,博士生,主要研究方向为道路安全与环境工程。E-mail: 2111521@tongji.edu.cn

通讯作者:

戢晓峰(1982—),男,教授,博士生导师,工学博士,主要研究方向为交通安全。E-mail: yiluxinshi@sina.com

中图分类号:

U491

基金项目:

国家自然科学基金(52062024);上海市科委科研计划(19DZ1209102)


Modeling Heterogeneity for Car-following Risk Evaluation Under Truck Movement Block
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于移动瓶颈理论和交通流理论构建“货车移动遮断”效应模型,解析货车移动遮断形成机理,选用无人机采集货车移动遮断场景中车辆行驶视频数据并提取高精度车辆跟驰轨迹样本,基于此提出考虑冲突可能性和冲突严重度的小客车跟驰风险评价方法和分级标准,利用RP-ORP模型构建了考虑异质性跟驰风险概率预测模型。结果表明:货车移动遮断动态影响交通流稳定性,其形成过程包括减速跟驰和加速超车两个阶段;考虑异质性的RP-ORP模型能实现特定条件下小客车跟驰行为处于不同风险等级的概率预测,且拟合优度高于FP-ORP模型高;货车纵向加速度、跟驰车头间距、跟驰持续时间、小客车与货车速度差、激进型驾驶员5个变量显著影响小客车跟驰风险水平,且跟驰持续时间和激进型驾驶员2个变量具有随机参数特性。

    Abstract:

    Based on the movement bottleneck and traffic flow theory, a "truck movement block" effect model was constructed to analyze occurrence mechanism and the car-following behavior. Then, the UAV was selected to collect the vehicle driving video under the truck movement block, and the high-precision car-following trajectory was extracted by trajectory software. Last, the car-following risk assessment methods and grading standards that considers both the possibility and the severity of the risk was proposed. And the random parameter ordered probit model (RP-ORP) was established to assess the car-following risk, and the elasticity coefficient was introduced to analyze the magnitude and direction of the impact on car-following risk. This finding demonstrates that truck movement block includes two processes: car-following and overtaking, which dynamically affects the traffic stability. the RP-ORP model has a better fit than the FP-ORP model, and can realize the probability prediction that different car-following levels under certain conditions. Five variables significantly affect the car-following risk level, such as truck longitudinal acceleration, car-following distance, car-following time, average car-following speed difference, radical driver, among the variables of car-following time and radical driver have random parameter characteristics.

    参考文献
    相似文献
    引证文献
引用本文

谢世坤,杨轸,戢晓峰.货车移动遮断影响下的跟驰风险异质性建模[J].同济大学学报(自然科学版),2022,50(12):1788~1797

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-03
  • 出版日期:
文章二维码