基于电警数据的单点自适应信号控制优化方法
CSTR:
作者:
作者单位:

1.同济大学 交通运输工程学院,上海 201804;2.同济大学 道路与交通工程教育部重点实验室,上海 201804

作者简介:

骆旅舟(1999—),男,博士生,主要研究方向为智能交通。E-mail: jexxllz@tongji.edu.cn

通讯作者:

唐克双(1980—),男,教授,博士生导师,工学博士,主要研究方向为智能交通。E-mail: tang@tongji.edu.cn

中图分类号:

U491.5+4

基金项目:

国家自然基金(61673302)


Adaptive Signal Control Optimization for Isolated Intersections Based on E-police Data
Author:
Affiliation:

1.College of Transportation Engineering, Tongji University, Shanghai 201804, China;2.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过深入挖掘利用电警数据蕴含的交通流信息,提出了一种基于电警数据的单点自适应信号控制优化方法。研究对象为各进口道均布设电警设备的四肢交叉口,4个上游交叉口也布设有电警设备,能够获取前往目标交叉口的车流。首先,根据TOD时段上下游电警匹配历史数据,利用高斯混合模型估计各路段行程时间参数,进而标定基于截断正态分布的车队离散模型;其次,基于实时到达率预测值,以目标交叉口总延误最小为优化目标,建立整数规划模型对信号控制参数进行实时滚动优化,采用动态规划算法求解;最后,在不同需求场景下对该方法进行仿真验证。结果表明,路段行程时间均值与标准差的估计误差均小于3s,车均延误与排队长度较最优灯组配时分别减少34.2%和40.5%以上。与感应控制相比,该方法在高需求场景下改善效果更为明显,车均延误与排队长度分别减少12.9%和15.8%,在其他场景下也分别有2.6%和5.4%以上的改善。同时,滚动优化时长的增加也能带来控制效益的提升。

    Abstract:

    An adaptive signal control optimization method based on E-police data was proposed by deeply mining and utilizing the traffic flow information contained in E-police data. The study object is a four-arm intersection where E-police detectors are deployed at each approach. Its four upstream intersections are also equipped with E-police detectors, which can obtain the traffic flow to the target intersection. Firstly, according to the matched historical data of upstream and downstream E-police in the TOD period, the link travel time parameters were estimated by Gaussian mixture model, and then the platoon discrete model based on truncated normal distribution was calibrated; Secondly, based on the predicted value of real-time arrival rate, taking the minimum total delay of the target intersection as the optimization objective, an integer programming model was established to optimize the signal control parameters in real-time by rolling horizon scheme, which was solved by dynamic programming; Finally, the proposed methods were simulated and verified in different demand scenarios. The results show that the estimation errors of the mean and standard deviation of link travel time are less than 3s, and the average vehicle delay and queue length are reduced by more than 34.2% and 40.5% respectively compared with the optimal group-based timing. Compared with the actuated control, the improvement of the proposed method is more obvious in high demand scenarios, where the average vehicle delay and queue length are reduced by 12.9% and 15.8% respectively, and more than 2.6% and 5.4% in other scenarios respectively. At the same time, the increase of planning horizon can also improve the control benefits.

    参考文献
    [1] TANG K, BOLTZE M, NAKAMURA H, et al. Global practices on road traffic signal control: Fixed-time control at isolated intersections[M]. Amsterdam: Elsevier, 2019.
    [2] SIMS A G, DOBINSON K W. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits[J]. IEEE Transactions on vehicular technology, 1980, 29(2): 130.
    [3] CAI C, WONG C K, HEYDECKER B G. Adaptive traffic signal control using approximate dynamic programming[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(5): 456.
    [4] CHEN S, SUN D J. An improved adaptive signal control method for isolated signalized intersection based on dynamic programming[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(4): 4.
    [5] LARRY H K. Event-based short-term traffic flow prediction model[J]. Transportation Research Record, 1995, 1510: 45.
    [6] ROBERTSON D I, BRETHERTON R D. Optimizing networks of traffic signals in real time-the SCOOT method[J]. IEEE Transactions on vehicular technology, 1991, 40(1): 11.
    [7] SEN S, HEAD K L. Controlled optimization of phases at an intersection[J]. Transportation Science, 1997, 31(1): 5.
    [8] FENG Y, HEAD K L, KHOSHMAGHAM S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 460.
    [9] CAI C, WANG Y, GEERS G. Vehicle-to-infrastructure communication-based adaptive traffic signal control[J]. IET Intelligent Transport Systems, 2013, 7(3): 351.
    [10] LEE J, PARK B, YUN I. Cumulative travel-time responsive real-time intersection control algorithm in the connected vehicle environment[J]. Journal of Transportation Engineering, 2013, 139(10): 1020.
    [11] YASIN A M, KARIM M R, ABDULLAH A S. Travel time measurement in real-time using automatic number plate recognition for Malaysian environment[J]. Journal of the Eastern Asia Society for Transportation Studies, 2010( 8): 1738.
    [12] KAZAGLI E, KOUTSOPOULOS H N. Estimation of arterial travel time from automatic number plate recognition data[J]. Transportation research record, 2013, 2391(1): 22.
    [13] RAO W, WU Y J, XIA J, et al. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 29.
    [14] MO B, LI R, DAI J. Estimating dynamic origin–destination demand: A hybrid framework using license plate recognition data[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(7): 734.
    [15] TANG K, CAO Y, CHEN C, et al. Dynamic origin-destination flow estimation using automatic vehicle identification data: A 3D convolutional neural network approach[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(1): 30.
    [16] ZHAN X, LI R, UKKUSURI S V. Lane-based real-time queue length estimation using license plate recognition data[J]. Transportation Research Part C: Emerging Technologies, 2015, 57: 85.
    [17] LUO X, MA D, JIN S, et al. Queue length estimation for signalized intersections using license plate recognition data[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(3): 209.
    [18] TAN C, LIU L, WU H, et al. Fuzing license plate recognition data and vehicle trajectory data for lane-based queue length estimation at signalized intersections[J]. Journal of Intelligent Transportation Systems, 2020, 24(5): 449.
    [19] NIE C, WEI H, SHI J, et al. Optimizing actuated traffic signal control using license plate recognition data: Methods for modeling and algorithm development[J]. Transportation Research Interdisciplinary Perspectives, 2021, 9: 100319.
    [20] ROBERTSON D I. TRANSYT: A traffic network study tool[R]. Crowthorne: Road Research Laboratory, 1969.
    [21] TRACZ M. The prediction of platoon dispersion based on rectangular distribution of journey time[J]. Traffic Engineering & Control, 1975, 16(11): 25.
    [22] POLUS A. A study of travel time and reliability on arterial routes[J]. Transportation, 1979, 8(2): 141.
    [23] 姚志洪, 王逸, 杨涛, 等. 行程时间服从截断正态分布的动态车队离散模型[J]. 吉林大学学报(工学版), 2020, 50(6): 2094.YAO Z, WANG Y, YANG T, et al. Dynamic platoon dispersion model based on truncated normal distribution of travel time[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2094.
    [24] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data Via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1.
    [25] STRONG D W, NAGUI R M, COURAGE K. New calculation method for existing and extended HCM delay estimation procedure[C]//Proceedings of the 87th Annual Meeting Transportation Research Board. Washington D C: Transportation Research Board, 2006: 06-0106.
    [26] IMPROTA G, CANTARELLA G E. Control system design for an individual signalized junction[J]. Transportation Research Part B: Methodological, 1984, 18(2): 147.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

骆旅舟,谈超鹏,唐克双.基于电警数据的单点自适应信号控制优化方法[J].同济大学学报(自然科学版),2022,50(12):1798~1808

复制
分享
文章指标
  • 点击次数:255
  • 下载次数: 712
  • HTML阅读次数: 77
  • 引用次数: 0
历史
  • 收稿日期:2021-11-28
  • 在线发布日期: 2023-01-03
文章二维码