多维度纳米三元过渡金属氧化物用于双功能电解水制氢催化剂
CSTR:
作者:
作者单位:

同济大学 汽车学院,上海 201804

作者简介:

毕松虎(1992—),男,博士研究生,主要研究方向为碱性电解水制氢催化剂设计。E-mail: bsh18208165397@163.com

通讯作者:

薛明喆(1982—),男,副教授,博士生导师,理学博士,主要研究方向为新能源材料与技术。E-mail: mzxue@tongji.edu.cn

中图分类号:

O646.51

基金项目:

国家重点研发计划(2022YFB4202200);中央高校基础研究基金(kx0170020210371)


Multi-Dimensional Ternary Nano-Transition Metal Oxides as Bifunctional Electrocatalysts for Water Electrolysis to Hydrogen Production
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于低廉的成本、简易的制备方法和优异的电化学性能,过渡金属氧化物被认为是一种有前景的碱性电解水制氢催化剂,但其形貌的电化学性能研究目前尚少。本文设计了一种多维度(一维、二维)齿轮形貌的纳米过渡金属氧化物碱性电解水制氢催化剂(NF/NCFO-g)。在1M KOH溶液、100 mA cm-2电流密度的条件下,NF/NCFO-g展现出了0.23 V的阳极过电位和0.29 V的阴极过电位,以及196 mV dec-1(阳极)和233 mV dec-1(阴极)的Tafel斜率,优于一维纳米针状结构(NF/NCFO-n)和二维纳米片状结构(NF/NCFO-s)催化剂。NF/NCFO-g具备优异的电催化性能得益于一维纳米针的“顶端优势”和二维片状结构的表面电荷效应的协同作用。“顶端优势”使得电荷大量聚集在尖端处,从而压缩了内层电容宽度,而二维表面电荷有助于形成更多的氧空位活性位点,进而优化过渡态的反应能量。此外,在高电流密度下,一维纳米针结构能够增强亲水性而减小气泡半径,从而加速了气泡的释放。

    Abstract:

    Transition metal oxides are considered as potential catalysts for hydrogen production in alkaline water electrolysis due to their low cost, easy fabrication, and excellent electrochemical properties. But the investigation of their morphology on catalyst performance is insufficient. In this paper, multi-dimensional (one-dimensional (1D), two-dimensional (2D)) gear-shaped transition metal oxide catalysts (NF/NCFO-g) are designed and used as bifunctional electrocatalysts for hydrogen production. In the 1 M KOH solution and a 100 mA cm-2 current density, NF/NCFO-g exhibited anodic overpotential of 0.23 V and a cathodic overpotential of 0.29 V, as well as Tafel slopes of 196 (anodic) and 233 mV dec-1 (cathode), which are superior to both 1D (NF/NCFO-n) and 2D (NF/NCFO-s) catalysts. The synergistic effect between the “apical advantage” of the 1D nanoneedle and the surface charge effect of the 2D sheet structure are responsible for the excellent electrocatalytic performance of NF/NCFO-g. The “apical advantage” causes a large amount of charge to accumulate at the tip, rendering the inner layer capacitance width being reduced, while the surface charge of 2D sheet structure helps form more oxygen vacancy active sites, resulting in an optimized reaction energy of the transition state. In addition, at high current densities, the 1D nanoneedle structure enhances hydrophilicity and reduces the bubble radius, thus accelerating the bubbles release.

    参考文献
    [1] PATEL M, KIM S, NGUYEN T T, et al. Transparent sustainable energy platform: Closed-loop energy chain of solar-electric-hydrogen by transparent photovoltaics, photo-electro-chemical cells and fuel system[J]. Nano Energy, 2021, 90(Part A): 106496.
    [2] PARTIDARIO P, AGUIAR R, MARTINS P, et al. The hydrogen roadmap in the portuguese energy system developing the P2G case[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25646.
    [3] DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847.
    [4] HOWARTH R W, JACOBSON M Z. How green is blue hydrogen?[J]. Energy Science & Engineering, 2021, 9(10): 1676.
    [5] HOSSEINI S E, WAHID M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850.
    [6] SELVAM C S, DU L, XIA B Y, et al. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities[J]. Advanced Functional Materials, 2020, 31(12): 2008190.
    [7] ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review [J]. Acs Catal, 2016, 6(12): 8069.
    [8] 张雪茹, 姚尚智, 肖客松, et al. 钴镍合金纳米片分级结构及其双催化电解水性能 [J]. 金属功能材料, 2019, 26(4): 23.ZHANG X R, YAO S Z, XIAO K S, et al. Hierarchical NiCo alloy with bifunctional electrocatalytical water splitting properties[J]. Metallic Functional Material, 2019, 26(4): 23.
    [9] YUAN W J, CUI Z D, ZHU S L, et al. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting[J]. Electrochim Acta, 2021, 365. DOI: 10.1016/j.electacta.2020.137366.
    [10] 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展 [J]. 现代化工, 2021, 41(5): 78.YANG Y, ZHANG S Z, WANG H T. Research progress on key materials for alkaline water electrolysis to hydrogen[J]. Modern Chemical Industry, 2021, 41(5): 78.
    [11] WANG P C, JIA T, WANG B G. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting[J]. Journal of Power Sources, 2020, 474:228621.
    [12] LUAN C, LIU G, LIU Y, et al. Structure effects of 2D materials on alpha-Nickel Hydroxide for Oxygen evolution reaction [J]. ACS Nano, 2018, 12(4): 3875.
    [13] HAO Z W, WEI P K, KANG H Z, et al. Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction[J]. Nanotechnology, 2020, 31: 43.
    [14] WANG P, QI J, CHEN X, et al. Three-dimensional heterostructured NiCoP@NiMn-Layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting[J]. Acs Appl Mater Inter, 2020, 12(4): 4385.
    [15] LI J, ZHENG G. one-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts[J]. Adv Sci (Weinh), 2017, 4(3): 1600380.
    [16] JOO J, KIM T, LEE J, et al. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Adv Mater, 2019, 31(14): e1806682.
    [17] LI Y, SHEN W. Morphology-dependent nanocatalysis on metal oxides[J]. Science China Chemistry, 2012, 55(12): 2485.
    [18] LIU P, CHEN B, LIANG C W, et al. Tip-enhanced electric field: A new mechanism promoting mass transfer in Oxygen evolution reactions[J]. Adv Mater, 2021, 33(9): 2007377.
    [19] 原荷峰,马自在,王淑敏,等. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831.YUAN H F, MA Z Z, WANG S M, et al. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting [J]. CIESC Journal, 2020, 71(12): 5831.
    [20] YANG X G, KARNBACH F, UHLEMANN M, et al. Dynamics of single hydrogen bubbles at a platinum microelectrode[J]. Langmuir, 2015, 31(29): 8184.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毕松虎,薛明喆,耿振,张存满.多维度纳米三元过渡金属氧化物用于双功能电解水制氢催化剂[J].同济大学学报(自然科学版),2022,50(S1):252~257

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 127
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2022-10-20
  • 在线发布日期: 2024-06-04
文章二维码