砂土液化后液-固相变机理的单元试验与模拟
CSTR:
作者:
作者单位:

1.中南大学 土木工程学院,湖南 长沙 410018;2.同济大学 土木工程学院,上海 200092

作者简介:

倪雪倩(1992—),女,讲师,工学博士,主要研究方向为岩土地震工程。 E-mail: nixueqian@csu.edu.cn

通讯作者:

叶 斌(1977—),男,教授,博士生导师,工学博士,主要研究方向为地震灾害机理与防控。 E-mail: yebin@tongji.edu.cn

中图分类号:

TU441

基金项目:

国家自然科学基金(52208379, 41977225)


Mechanical Behavior and Theoretical Simulation of Post-Liquefied Sand in Fluid-Solid Transition Process
Author:
Affiliation:

1.School of Civil Engineering, Central South University, Changsha 410018, China;2.College of Civil Engineering, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    液化后砂土流动是一个涉及液相向固相转化的过程。针对目前常规三轴加载模式在进行松砂液化后性质研究中存在局限性的现状,提出应力与应变控制相结合的加载方法,获取初始液化状态,开展液化后松散土体流态化性质研究。基于试验结果,引入液?固相变参数,耦合流体本构与固体本构关系,建立可统一描述液化后土体应力应变关系的经验模型,实现不同密实度条件下砂土液化后液?固相变转化全过程力学行为的模拟。

    Abstract:

    Post-liquefied sand flow involves a phase transition process from fluid to solid. To overcome the limitation of normal triaxial loading mode for loose sand, a two-staged loading method, stress- and strain-controlled loading, was applied to obtain the initial liquefaction state and investigate the mechanical behavior in the post-liquefaction process. Based on test results, a fluid-solid transition parameter was proposed to combine solid and fluid constitutive models. Finally, the stress-strain relation of post-liquefied sand was established to simulate the fluid-solid transition process at different relative densities.

    参考文献
    [1] ISHIHARA K, YASUDA S, YOSHIDA Y. Liquefaction-induced flow failure of embankments and residual strength of silty sands [J]. Soils and Foundations, 1990, 30(3): 69.
    [2] YASUDA S, YOSHIDA N, MASUDA T. et al. Stress-strain relationships of sand after liquefaction [C]// Proceedings of the 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri:[s.n.], 1995: 295-298.
    [3] YASUHARA K, MURAKAMI S, SONG B W, et al. Postcyclic degration of strength and stiffness for low plasticity silt [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(8): 756.
    [4] ROUHOLAMIN M, BHATTACHARYA S, ORENSE R P. Effect of initial relative density on the post-liquefaction behavior of sand [J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 25.
    [5] SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading [J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(6): 105.
    [6] 张建民. 砂土动力学若干基本理论探讨 [J]. 岩土工程学报, 2012, 34(1): 1.ZHANG Jianmin. New advances in basic theories of sand dynamics [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1.
    [7] 庄海洋, 胡中华, 王瑞, 等. 南京饱和细砂液化后大变形条件下动剪切模量衰减特征研究 [J]. 岩土力学, 2017, 38(12): 3445.ZHUANG Haiyang, HU Zhonghua, WANG Rui, et al. Shear moduli reduction of saturated Nanjing sand under large deformation induced by liquefaction [J]. Rock and Soil Mechanics, 2017, 38(12): 3445.
    [8] 刘汉龙, 周云东, 高玉峰. 砂土地震液化后大变形特性试验研究 [J]. 岩土工程学报, 2002, 24(2): 142.LIU Hanlong, ZHOU Yundong, GAO Yufeng. Study on the behavior of large ground displacement of sand due to seismic liquefaction [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 142.
    [9] HUANG Y, MAO W, HUANG M, et al. Triaxial tests on the fluidic behavior of post-liquefaction sand [J]. Environmental Earth Sciences, 2012, 67(8): 2325.
    [10] NICOT F, DARVE F, KHOA H D V. Bifurcation and second order work in geomaterials [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(8): 1007.
    [11] NI X Q, YE B, YE G L, et al. Unique determination of cyclic instability state in flow liquefaction of sand [J]. Marine Georesources and Geotechnology, 2020, 39(8): 974.
    [12] YE B, NI X Q, YE G L, et al. Prediction of the initial point of the last cycle in undrained cyclic triaxial tests on flow liquefaction [J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 12.
    [13] YOSHIDA N, YASUDA S, KIKU M, et al. Behaviors of sand after liquefaction [R]. Salt Lake City: Technical Report Nceer, 1994.
    [14] VAID Y P, THOMAS J. Liquefaction and postliquefaction behaviour of sand [J]. Journal of Geotechnical Engineering, 1995, 121(2): 163.
    [15] YASUDA S, NAGAS H, KIKU H, et al. Mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction [J]. Soils and Foundations, 1992, 32(3): 149.
    [16] 陈育民, 刘汉龙,周云东. 液化及液化后砂土的流动特性分析 [J]. 岩土工程学报, 2006, 28(9): 1139.CHEN Yumin, LIU Hanlong, ZHOU Yundong. Analysis on flow characteristics of liquefied and post-liquefied sand [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139.
    [17] 陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究 [J]. 岩土工程学报, 2009, 31(9): 1408.CHEN Yumin, LIU Hanlong, SHAO Guojian, et al. Laboratory tests on flow characteristics of liquefied sand post-liquefied sand [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408.
    [18] 周恩全, 王志华, 陈国兴, 等. 饱和土液化后流体本构模型研究 [J]. 岩土工程学报, 2015, 37(1): 112.ZHOU Enquan, WANG Zhihua, CHEN Guoxing, et al. Constitutive model for fluid pf post-liquefied sand [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112.
    [19] LOMBARDI D, BHATTACHARYA S. Modal analysis of pile supported structures during seismic liquefaction [J]. Earthquake Engineering Structural Dynamics, 2014, 43: 119.
    [20] PRIME N, DUFOUR F, DARVE F. Solid-fluid transition modelling in geomaterials and application to a mudflow interacting with an obstacle [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(13): 1341.
    [21] NAGASE H, ISHIHARA K. Liquefaction-induced compaction and settlement of sand during earthquakes [J]. Soils and Foundations, 1988, 28(1): 65.
    相似文献
    引证文献
引用本文

倪雪倩,叶斌.砂土液化后液-固相变机理的单元试验与模拟[J].同济大学学报(自然科学版),2023,51(1):16~22

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-10
  • 在线发布日期: 2023-02-02
文章二维码