考虑声源非相干性的城市轨道交通全封闭声屏障降噪预测
CSTR:
作者:
作者单位:

1.上海材料研究所,上海 200437;2.上海消能减震工程技术研究中心,上海 200437;3.同济大学 铁道与城市轨道交通研究院,上海 201804

作者简介:

李秋彤(1991—),女,副研究员,工学博士,主要研究方向为轨道交通减振降噪。 E-mail: lqt910818@163.com

通讯作者:

刘 艳(1985—),女,副研究员,工学博士,主要研究方向为轨道结构。E-mail: 15000600002@163.com

中图分类号:

U239.5;TB535+.1

基金项目:

上海市浦江人才计划(20PJ1417300);上海张江国家自主创新示范区专项发展资金(ZJ2021-ZD-006)


Noise Reduction Prediction of a Fully-Enclosed Sound Barrier in Urban Rail Transit Systems Considering Incoherence of Sources
Author:
Affiliation:

1.Shanghai Research Institute of Materials, Shanghai 200437, China;2.Shanghai Engineering Research Center of Earthquake Energy Dissipation, Shanghai 200437, China;3.Institute of Rail Transit, Tongji University, Shanghai, 201804,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [13]
  • | | |
  • 文章评论
    摘要:

    以某轨道交通全封闭声屏障为研究对象,考虑简化线声源的非相干性,建立2.5维边界元衍射声场模型;通过现场沿线环境噪声测试,验证了该模型的准确性,并与相干源衍射声场预测结果比较;最后预测了在近场高层建筑附近,全封闭声屏障对近轨或远轨车辆噪声的降噪效果。研究结果表明,非相干线声源更符合城市轨道交通噪声源特性;对于轮轨噪声(315~1 000 Hz),全封闭声屏障在高层住宅建筑区域有显著的降噪效果,1/3 倍频程插入损失最大为30.0 dB。对于低频噪声(50~250 Hz),全封闭声屏障会加重高层住宅建筑区域的声压级,使插入损失出现负值。针对高层建筑附近场点,全封闭声屏障的顶端拱形透光板对远轨车辆噪声有更为显著的附加降噪效果,大部分场点附加插入损失均高于5.0 dB。

    Abstract:

    A 2.5-dimensional boundary element method(BEM) diffraction sound field model was established, by taking a rail transit fully-enclosed sound barrier as the research object and considering the incoherence of the simplified linear sound source. The accuracy of the model was verified by field noise tests along an urban line, and the prediction results were compared with those of the coherent source diffraction sound field. Finally, at the positions of the high-rise buildings along the line, the noise reduction effects of the fully-enclosed sound barrier on the passing noise of near or far rail vehicles were predicted. The results show that the incoherent line sources are more in accordance with the characteristics of urban rail transit noise sources. The prediction results of their diffraction sound field are more consistent with the measured results. For wheel-rail noise (315 to 1 000 Hz), the fully-enclosed barrier has a considerable reduction effect at the area of the high-rise buildings, with the maximum 1/3 octave band insertion loss of 30.0 dB. For low-frequency noise (50 to 250 Hz), the fully-enclosed barrier enhances the sound pressure levels at the area of the high-rise buildings, leading to negative values of the insertion losses. For the receivers near high-rise buildings, the top-arched transparent panels of the fully enclosed sound barrier have a more significant additional noise reduction effect on the passing noise of far rail vehicles, and the additional insertion losses at most receivers are higher than 5.0 dB.

    参考文献
    [1] ZHANG X. The directivity of railway noise at different speeds[J]. Journal of Sound and Vibration, 2010. DOI:10.1016/j.jsv.2010.07.003.
    [2] THOMPSON D J. Wheel-rail noise generation, part I: introduction and interaction model[J]. Journal of Sound and Vibration, 1993. DOI:10.1006/jsvi.1993.1082.
    [3] 刘扬, 温志伟, 程明昆. 城市轨道交通噪声预测模式的研究及其应用[J]. 都市快轨交通, 1998, 4:32.LIU Yang, WEN Zhiwei, CHENG Mingkun. Research and application of prediction model of urban rail transit noise[J]. Urban Rapid Rail Transit, 1998, 4:32.
    [4] 翟国庆, 张邦俊, 过春燕. 城市高架轨道交通沿线声场分布计算模型[J]. 中国环境科学, 2004, 24(3):320.ZHAI Guoqing, ZHANG Bangjun, GUO Chunyan. The calculating model of sound field distribution along the urban elevated railway[J]. China Environmental Science, 2004, 24(3):320.
    [5] 朱彦, 陈光冶, 林常明. 城市高架轨道桥辐射噪声的计算与分析[J]. 噪声与振动控制, 2005, 25(3):37.ZHU Yan, CHEN Guangye, LIN Changming. Numerical prediction and analysis of radiated noise from viaduct of city[J]. Noise and Vibration Control, 2005, 25(3):37.
    [6] 刘鹏辉, 杨宜谦. 城市轨道交通微穿孔板式声屏障的设计[C]//噪声与振动控制. 北海:中国声学学会,2009:320–324.LIU Penghui, YANG Yiqian. Design of sound barrier based on micro-perforated panel absorber for urban transit[C]// Prediction and Control of Transportation Noise . Beihai: The Acoustical Society of China, 2009: 320–324.
    [7] 王晨. 城市轨道交通高架线路噪声预测简化模型的建立及验证[J]. 城市轨道交通研究, 2019, 8:153WANG Chen. Establishment and validation of simplified noise prediction model for urban rail transit elevated line[J]. Urban Mass Transit, 2019, 8: 153.
    [8] 王奕然, 孙京健. 北京地铁5号线声屏障工程的设计与研究[J]. 铁道标准设计, 2007 (10):26.WANG Yiran, SUN Jingjian. Design and research of the sound barrier project of Beijing metro line 5[J]. Railway Standard Design, 2007 (10):26.
    [9] PETERS S. The prediction of railway noise profiles[J]. Journal of Sound and Vibration, 1974, 32(1): 87.
    [10] HOHENWARTER D. Railway noise propagation models[J]. Journal of Sound and Vibration, 1990, 141(1): 17.
    [11] 何宾. 高速铁路声屏障声学设计、优化及试验研究[D]. 成都: 西南交通大学, 2017.HE Bin. Acoustic design, optimization and experimental study of high-speed railway sound barrier[D]. Chengdu: Southwest Jiaotong University, 2017.
    [12] MURADALI A, FYFE K R. A study of 2D and 3D barrier insertion loss using improved diffraction-based methods[J]. Applied Acoustics, 1998. DOI:10.1016/s0003-682x(97)00040-6.
    [13] SEZNEC R. Diffraction of sound around barriers: use of the boundary elements technique[J]. Journal of Sound and Vibration, 1980. DOI:10.1016/0022-460X(80)90689-6.
    [14] DUHAMEL D. Efficient calculation of the three-dimensional sound pressure field around a noise barrier[J]. Journal of Sound and Vibration, 1996. DOI:10.1006/jsvi.1996.0548.
    [15] KOUSSA F, DEFRANCE J, JEAN P, et al. Acoustic performance of gabions noise barriers: numerical and experimental approaches[J]. Applied Acoustics, 2013. DOI:10.1016/j.apacoust.2012.07.009.
    [16] FORSSéN J, ESTéVEZ-MAURIZ L, C TOREHAMMARet al. A low-height acoustic screen in a setting with an urban road: measured and predicted insertion loss[C]//Proceedings of the INTER-NOISE 2016 - 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future. Hamburg: Institute of Noise Control Engineering, 2016:3858-4854.
    [17] HIROE M, KOBAYASHI T, ISHIKAWA S. 2.5-dimensional finite-difference time-domain analysis for propagation of conventional railway noise: application to propagation of sound from surface railway and its verification by scale model experiments[J]. Acoustical Science and Technology, 2017. DOI:10.1250/ast.38.42.
    [18] ISHIZUKA T, FUJIWARA K. Performance of noise barriers with various edge shapes and acoustical conditions[J]. Applied Acoustics, 2004. DOI:10.1016/j.apacoust.2003.08.006.
    [19] BAULAC M, DEFRANCE J, JEAN P, et al. Efficiency of noise protections in urban areas: predictions and scale model measurements[J]. Acta Acustica United with Acustica, 2006, 92(4):530.
    [20] HOTHERSALL D C, CROMBIE D H, CHANDLER-WILDE S N. The performance of t-profile and associated noise barriers[J]. Applied Acoustics, 1991. DOI:10.1016/0003-682X(91)90075-P.
    [21] LI Q, DUHAMEL D, YIN H, et al. Comparative analysis of different types of sources on the performance of rigid noise barriers on rigid ground using analytical formulae, a 2.5-D BEM method and scale modelling tests[J]. Acta Acustica United with Acustica, 2019. DOI:10.3813/AAA.919380.
    [22] LI Qiutong, DUHAMEL Denis, LUO Yanyun, et al. Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach[J]. Applied Acoustics,2020,158: 107079.1
    [23] 李建平, 何金龙. 北京市轨道交通房山线声屏障设计的声学模拟[J]. 铁道标准设计, 2011 (1):1.LI Jianping, HE Jinlong. Acoustic simulation of sound barrier design of Fangshan line of Beijing rail transit[J]. Railway Standard Design, 2011 (1):1.
    [24] 沈彬. 某轨道交通声屏障工程深化设计方案[J]. 城市道桥与防洪, 2019(4):214.SHEN Bin. The deepening design of a rail transit sound barrier project[J]. Urban Roads Bridges & Flood Control, 2019(4):214.
    [25] 马娜. 上海轨道交通6 号线全封闭声屏障工程设计[J]. 现代城市轨道交通, 2010 (5):38.MA Na. Design of fully enclosed sound barrier for Shanghai rail transit line 6[J]. Modern Urban Transit, 2010 (5):38.
    [26] 马娜. 上海轨道交通明珠线二期全封闭声屏障工程设计[J]. 现代城市轨道交通, 2005 (3): 41.MA Na. Design of fully enclosed sound barrier for Shanghai Mingzhu line[J]. Modern Urban Transit, 2005 (3): 41.
    [27] LI K M, WONG H Y. A review of commonly used analytical and empirical formulae for predicting sound diffracted by a thin screen[J]. Applied Acoustics, 2005. DOI:10.1016/j.apacoust.2004.06.004.
    [28] 张江涛. 泡沫金属吸声性能的优化研究[D]. 北京:华北电力大学, 2013.ZHANG Jiangtao. Optimization on sound absorption behavior of metal foam[D]. Beijing: North China Electric Power University, 2013.
    [29] DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2):105.
    [30] 李小珍,聂骏,郭镇,等. 钢弹簧浮置板轨道对箱梁振动声辐射的影响研究[J]. 振动与冲击,2019,38(13):34.LI Xiaozhen, NIE Jun, GUO Zhen, et al. Effects of steel spring floating slab track on vibration and sound radiation of a box-girder[J]. Journal of Vibration and Shock, 2019,38(13):34.
    [31] 张小安,翟婉明,石广田,等. 城市轨道交通直壁式声屏障车致振动噪声研究[J]. 兰州交通大学学报,2019,38(1):78.ZHANG Xiaoan, ZHAI Wanming, SHI Guangtian, et al. Structure noise of straight-wall noise barrier in urban rail transit[J]. Journal of Lanzhou Jiaotong University, 2019,38(1):78.
    [32] 孙涛. 城市交通噪声对高层建筑的影响及声屏障优化设计研究[J]. 环境科学与管理, 2015 (8):62.SUN Tao. Study on impact of traffic noise and optimization design of sound barrier for high-rise buildings[J]. Environmental Science and Management, 2015 (8):62.
    [33] 栗健. 城际铁路单侧高层建筑物声屏障形式设计研究[J]. 铁道标准设计, 2014, 58(7): 153.LI Jian. Design study on the type of sound barrier for protecting high-rise buildings along single side of intercity railway[J]. Railway Standard Design, 2014, 58(7): 153.
    [34] 蒋鑫. 高铁城市范围单侧高层建筑特殊声屏障声学研究[D].成都: 西南交通大学, 2014.JIANG Xin. Acoustic research on special sound barriers for unilateral high-rise buildings along high-speed railways in urban area[D]. Chengdu: Southwest Jiaotong University, 2014.
    [35] 李杰. 交通噪声对城市高层住宅声环境影响研究[D]. 西安: 长安大学, 2009.LI Jie. Study of the traffic noise impact on urban high-rise residential acoustic environmental[D]. Xi’an: Chang’an University, 2009.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李秋彤,刘艳,罗雁云.考虑声源非相干性的城市轨道交通全封闭声屏障降噪预测[J].同济大学学报(自然科学版),2023,51(1):117~125

复制
分享
文章指标
  • 点击次数:168
  • 下载次数: 465
  • HTML阅读次数: 72
  • 引用次数: 0
历史
  • 收稿日期:2021-10-08
  • 在线发布日期: 2023-02-02
文章二维码